Abstract

The spectrum of Nb xiii was observed with a low-inductance spark and a laser-produced plasma in the region from 70–630 Å on the 10.7-m grazing incidence spectrograph at NBS. From the identification of 38 lines, a system of 29 energy levels was determined. The level system (Cu i isoelectronic sequence, 3d 10nl) includes the series ns(n = 4–6), np(n = 4–7), nd(n = 4–6), nf(n = 4–7), and ng(n = 5–8). The observed energy levels are compared with Hartree-Fock calculations. The ionization energy is determined from the nf and ng series to be 2 166 300 ± 300 cm −1 (268.59 ± 0.04 eV).

© 1980 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Alexander, M. Even-Zohar, B. S. Fraenkel, and S. Goldsmith, “Classification of Transitions in the euv Spectra of Y ix–xiii, Zr x–xiv, Nb xi–xv, and Mo xii–xvi,” J. Opt. Soc. Am. 61, 508–514 (1971).
    [Crossref]
  2. J. Reader and N. Acquista, “4s-4p resonance transitions in highly charged Cu- and Zn-like ions,” Phys. Rev. Lett. 39, 184–187 (1977).
    [Crossref]
  3. J. Reader and N. Acquista, “Spectrum and energy levels of ten-times ionized yttrium (Y xi),” J. Opt. Soc. Am. 69, 1285–1288 (1979).
    [Crossref]
  4. J. Reader and N. Acquista, “Spectrum and energy levels of eleven-times ionized zirconium (Zr xii),” J. Opt. Soc. Am. 69, 1659–1662 (1979).
    [Crossref]
  5. J. Reader, G. Luther, and N. Acquista, “Spectrum and energy levels of thirteen-times ionized molybdenum (Mo xiv),” J. Opt. Soc. Am. 69, 144–149 (1979).
    [Crossref]
  6. U. Feldman, M. Swartz, and L. Cohen, “Vacuum ultraviolet source,” Rev. Sci. Instrum. 38, 1372–1373 (1967).
    [Crossref]
  7. L. Å. Svensson and J. O. Ekberg, “The titanium vacuum-spark spectrum from 50 to 425 Å,” Ark. Fys. 40, 145–164 (1969).
  8. J. Reader, G. L. Epstein, and J. O. Ekberg, “Spectra of Rb ii, Sr iii, Y iv, Zr v, Nb vi, and Mo vii in the Vacuum Ultraviolet,” J. Opt. Soc. Am. 62, 273–284 (1972).
    [Crossref]
  9. J. O. Ekberg, J. E. Hansen, and J. Reader, “Analysis of the Spectrum of Six-Times Ionized Niobium (Nb vii),” J. Opt. Soc. Am. 62, 1139–1142 (1972).
    [Crossref]
  10. J. Reader and N. Acquista, “4s24p4-4s 4p5transitions in Zr vii, Nb viii, and Mo ix,” J. Opt. Soc. Am. 66, 896–899 (1976).
    [Crossref]
  11. Optimization of the level values was done with the computer program ELCALC, due to L. Radziemski, Jr.
  12. K. T. Cheng and Y.-K. Kim, “Energy Levels, Wavelengths, and Transition Probabilities for Cu-like Ions,” At. Data Nucl. Data Tables 22, 547–563 (1978).
    [Crossref]
  13. C. Froese, “Numerical Solution of the Hartree-Fock Equations,” Can. J. Phys. 41, 1895–1910 (1963), and C. Froese-Fischer and M. Wilson, “Programs for Atomic Structure Calculations,” Argonne National Laboratory Report No. 7404 (National Technical Information Service, Springfield, Virginia, 22161).
    [Crossref]

1979 (3)

1978 (1)

K. T. Cheng and Y.-K. Kim, “Energy Levels, Wavelengths, and Transition Probabilities for Cu-like Ions,” At. Data Nucl. Data Tables 22, 547–563 (1978).
[Crossref]

1977 (1)

J. Reader and N. Acquista, “4s-4p resonance transitions in highly charged Cu- and Zn-like ions,” Phys. Rev. Lett. 39, 184–187 (1977).
[Crossref]

1976 (1)

1972 (2)

1971 (1)

1969 (1)

L. Å. Svensson and J. O. Ekberg, “The titanium vacuum-spark spectrum from 50 to 425 Å,” Ark. Fys. 40, 145–164 (1969).

1967 (1)

U. Feldman, M. Swartz, and L. Cohen, “Vacuum ultraviolet source,” Rev. Sci. Instrum. 38, 1372–1373 (1967).
[Crossref]

1963 (1)

C. Froese, “Numerical Solution of the Hartree-Fock Equations,” Can. J. Phys. 41, 1895–1910 (1963), and C. Froese-Fischer and M. Wilson, “Programs for Atomic Structure Calculations,” Argonne National Laboratory Report No. 7404 (National Technical Information Service, Springfield, Virginia, 22161).
[Crossref]

Acquista, N.

Alexander, E.

Cheng, K. T.

K. T. Cheng and Y.-K. Kim, “Energy Levels, Wavelengths, and Transition Probabilities for Cu-like Ions,” At. Data Nucl. Data Tables 22, 547–563 (1978).
[Crossref]

Cohen, L.

U. Feldman, M. Swartz, and L. Cohen, “Vacuum ultraviolet source,” Rev. Sci. Instrum. 38, 1372–1373 (1967).
[Crossref]

Ekberg, J. O.

Epstein, G. L.

Even-Zohar, M.

Feldman, U.

U. Feldman, M. Swartz, and L. Cohen, “Vacuum ultraviolet source,” Rev. Sci. Instrum. 38, 1372–1373 (1967).
[Crossref]

Fraenkel, B. S.

Froese, C.

C. Froese, “Numerical Solution of the Hartree-Fock Equations,” Can. J. Phys. 41, 1895–1910 (1963), and C. Froese-Fischer and M. Wilson, “Programs for Atomic Structure Calculations,” Argonne National Laboratory Report No. 7404 (National Technical Information Service, Springfield, Virginia, 22161).
[Crossref]

Goldsmith, S.

Hansen, J. E.

Kim, Y.-K.

K. T. Cheng and Y.-K. Kim, “Energy Levels, Wavelengths, and Transition Probabilities for Cu-like Ions,” At. Data Nucl. Data Tables 22, 547–563 (1978).
[Crossref]

Luther, G.

Reader, J.

Svensson, L. Å.

L. Å. Svensson and J. O. Ekberg, “The titanium vacuum-spark spectrum from 50 to 425 Å,” Ark. Fys. 40, 145–164 (1969).

Swartz, M.

U. Feldman, M. Swartz, and L. Cohen, “Vacuum ultraviolet source,” Rev. Sci. Instrum. 38, 1372–1373 (1967).
[Crossref]

Ark. Fys. (1)

L. Å. Svensson and J. O. Ekberg, “The titanium vacuum-spark spectrum from 50 to 425 Å,” Ark. Fys. 40, 145–164 (1969).

At. Data Nucl. Data Tables (1)

K. T. Cheng and Y.-K. Kim, “Energy Levels, Wavelengths, and Transition Probabilities for Cu-like Ions,” At. Data Nucl. Data Tables 22, 547–563 (1978).
[Crossref]

Can. J. Phys. (1)

C. Froese, “Numerical Solution of the Hartree-Fock Equations,” Can. J. Phys. 41, 1895–1910 (1963), and C. Froese-Fischer and M. Wilson, “Programs for Atomic Structure Calculations,” Argonne National Laboratory Report No. 7404 (National Technical Information Service, Springfield, Virginia, 22161).
[Crossref]

J. Opt. Soc. Am. (7)

Phys. Rev. Lett. (1)

J. Reader and N. Acquista, “4s-4p resonance transitions in highly charged Cu- and Zn-like ions,” Phys. Rev. Lett. 39, 184–187 (1977).
[Crossref]

Rev. Sci. Instrum. (1)

U. Feldman, M. Swartz, and L. Cohen, “Vacuum ultraviolet source,” Rev. Sci. Instrum. 38, 1372–1373 (1967).
[Crossref]

Other (1)

Optimization of the level values was done with the computer program ELCALC, due to L. Radziemski, Jr.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (1)

FIG. 1
FIG. 1

Grotrian diagram for Nb xiii. Wavelengths are in Å. Intensities are indicated in parentheses following the wavelengths. Wavelengths of the 4s-5p and 4s-6p transitions are those calculated from the optimized level values.

Tables (6)

Tables Icon

TABLE I Observed lines of Nb xiii. Symbols: c, complex; h, hazy.

Tables Icon

TABLE II Energy levels of Nb xiii.

Tables Icon

TABLE III Observed and calculated nf2F fine-structure intervals in Nb xiii. Values are in cm−1.

Tables Icon

TABLE IV Wavelengths of selected Nb xiii lines as calculated from optimized level values. The 4s-7p transitions have not been observed.

Tables Icon

TABLE V Energy parameters in cm−1 for Nb xiii.

Tables Icon

TABLE VI Values for the ionization energy of Nb xiii determined from various series. The adopted value of the ionization energy is 2166300 ± 300 cm−1.