Abstract

By using asymmetric Fourier-transform techniques, the room-temperature optical constants of z-cut quartz have been determined between 100 and 500 cm−1.

© 1980 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Rubens, “Über Dispersion Ultraroten Strahlen,” Wied Ann. 45, 238–261 (1892).
    [CrossRef]
  2. M. Czerny, “Zum Raman-Effekt Des Quarzes,” Z. Phys. 53, 317–330 (1929).
    [CrossRef]
  3. R. Bowling Barnes, “Measurement in the long wavelength infrared from 20 to 135 μ,” Phys. Rev. 39, 562–575 (1932).
    [CrossRef]
  4. W. G. Spitzer and D. A. Kleinman, “Infrared lattice bands of quartz,” Phys. Rev. 121, 1324–1335 (1961); D. A. Kleinman and W. G. Spitzer, “Theory of the optical properties of quartz in the infrared,” Phys. Rev. 125, 16–30 (1962).
    [CrossRef]
  5. R. Geick, “Der Brechungsindex Von Kristallinem und Geschmolzenem Quarz im Spektralbereich um 100μ,” Z. Phys. 161, 116–122 (1961).
    [CrossRef]
  6. S. Roberts and D. D. Coon, “Far-infrared properties of quartz and sapphire,” J. Opt. Soc. Am. 52, 1023–1029 (1962).
    [CrossRef]
  7. A. Hadni, J. Claudel, E. Decamps, X. Gerbaux, and P. Strimer, “Spectres D’Absorption de Monocristaux Dans L’infrarouge Lointain (50-1600μ), A la Temperature de L’Helium Liquide: Iodure de Cesium, Quartz, Germanium et Nitrate de Neodyme,” C. R. Acad. Sci. 255, 1595–1597 (1962).
  8. J. E. Chamberlain, J. E. Gibbs, and H. A. Gebbie, “Refractometry in the Far Infra-Red Using a Two-Beam Interferometer,” Nature 198, 874–875 (1963).
    [CrossRef]
  9. J. E. Chamberlain and H. A. Gebbie, “Determination of the Refractive Index of a Solid Using a Far Infra-red Maser,” Nature 206, 602–603 (1965).
    [CrossRef]
  10. L. V. Berman and Z. G. Zhukov, “Optical Constants of Crystalline Quartz in the Far Infrared Region,” Opt. Spektrosk. 21, 735–740 (1966) [Opt. Spectrosc. 21, 401–404 (1966)].
  11. O. M. Clark, “Temperature Dependence of the Infrared Spectra of Selected Dielectrics II,” Air Force Cambridge Research Laboratories Report AFCRL 66–20 (unpublished).
  12. J. N. Plendl, L. C. Mansur, A. Hadni, F. Brehat, P. Henry, G. Morlot, F. Naudin, and P. Strimer, “Low Temperature Far Infrared Spectra of SiO2Polymorphs,” J. Phys. Chem. Solids 28, 1589–1597 (1967).
    [CrossRef]
  13. E. E. Russell and E. E. Bell, “Measurement of the optical constants of crystal quartz in the far infrared with the asymmetric Fourier-transform method,” J. Opt. Soc. Am. 57, 341–348 (1967).
    [CrossRef]
  14. L. Merten, “Zur Ultrarot-Dispersion Zweiachsiger und Einachsiger Kristalle,” Z. Naturforsch 23a, 1183–1193 (1968).
  15. J. Onstott and G. Lucovsky, “Directional Dispersion of Extraordinary Optical Phonons in α-Quartz in the Frequency Domain from 380 to 640 cm−1.,” J. Phys. Chem. Solids 31, 2171–2184 (1970).
    [CrossRef]
  16. E. V. Loewenstein, D. R. Smith, and R. L. Morgan, “Optical Constants of Far Infrared Materials. 2: Crystalline Solids,” Appl. Opt. 12, 398–406 (1973).
    [CrossRef] [PubMed]
  17. F. Gervais and B. Piriou, “Temperature Dependence of Transverse and Longitudinal Optic Modes in the α and β phase of Quartz,” Phys. Rev. B 11, 3944–3950 (1975).
    [CrossRef]
  18. J. E. Chamberlain and H. A. Gebbie, “Dispersion Measurements on Polytetrafluorethylene in the Far Infrared,” Appl. Opt. 5, 393–396 (1966).
    [CrossRef] [PubMed]
  19. E. E. Bell, “Measurement of the Far Infrared Optical Properties of Solids with a Michelson Interferometer Used in the Asymmetric Mode: Part I, Mathematical Formulation,” Infrared Phys. 6, 57–74 (1966).
    [CrossRef]
  20. For an elementary description, see R. J. Bell, Introductory Fourier Transform Spectroscopy (Academic, New York, 1972), Chap. 8.
  21. E. E. Russell and E. E. Bell, “Measurement of the Far Infrared Optical Properties of Solids with a Michelson Interferometer Used in the Asymmetric Mode: Part II, the Vacuum Interferometer,” Infrared Phys. 6, 75–84 (1966).
    [CrossRef]
  22. A. N. Mirgorodskii and A. N. Lazarev, “Calculation of Intensities in an α-quartz Crystal as a Method of Checking on the Shapes of the Vibrations,” Opt. Spektrosk. 34, 895–901 (1973) [Opt. Spectrosc. 34, 514–517 (1973)].
  23. Philip R. Bevington, Data Reduction and Analysis for the Physical Sciences, (McGraw-Hill, New York, 1969), Chap. 11.

1975 (1)

F. Gervais and B. Piriou, “Temperature Dependence of Transverse and Longitudinal Optic Modes in the α and β phase of Quartz,” Phys. Rev. B 11, 3944–3950 (1975).
[CrossRef]

1973 (2)

A. N. Mirgorodskii and A. N. Lazarev, “Calculation of Intensities in an α-quartz Crystal as a Method of Checking on the Shapes of the Vibrations,” Opt. Spektrosk. 34, 895–901 (1973) [Opt. Spectrosc. 34, 514–517 (1973)].

E. V. Loewenstein, D. R. Smith, and R. L. Morgan, “Optical Constants of Far Infrared Materials. 2: Crystalline Solids,” Appl. Opt. 12, 398–406 (1973).
[CrossRef] [PubMed]

1970 (1)

J. Onstott and G. Lucovsky, “Directional Dispersion of Extraordinary Optical Phonons in α-Quartz in the Frequency Domain from 380 to 640 cm−1.,” J. Phys. Chem. Solids 31, 2171–2184 (1970).
[CrossRef]

1968 (1)

L. Merten, “Zur Ultrarot-Dispersion Zweiachsiger und Einachsiger Kristalle,” Z. Naturforsch 23a, 1183–1193 (1968).

1967 (2)

J. N. Plendl, L. C. Mansur, A. Hadni, F. Brehat, P. Henry, G. Morlot, F. Naudin, and P. Strimer, “Low Temperature Far Infrared Spectra of SiO2Polymorphs,” J. Phys. Chem. Solids 28, 1589–1597 (1967).
[CrossRef]

E. E. Russell and E. E. Bell, “Measurement of the optical constants of crystal quartz in the far infrared with the asymmetric Fourier-transform method,” J. Opt. Soc. Am. 57, 341–348 (1967).
[CrossRef]

1966 (4)

L. V. Berman and Z. G. Zhukov, “Optical Constants of Crystalline Quartz in the Far Infrared Region,” Opt. Spektrosk. 21, 735–740 (1966) [Opt. Spectrosc. 21, 401–404 (1966)].

J. E. Chamberlain and H. A. Gebbie, “Dispersion Measurements on Polytetrafluorethylene in the Far Infrared,” Appl. Opt. 5, 393–396 (1966).
[CrossRef] [PubMed]

E. E. Bell, “Measurement of the Far Infrared Optical Properties of Solids with a Michelson Interferometer Used in the Asymmetric Mode: Part I, Mathematical Formulation,” Infrared Phys. 6, 57–74 (1966).
[CrossRef]

E. E. Russell and E. E. Bell, “Measurement of the Far Infrared Optical Properties of Solids with a Michelson Interferometer Used in the Asymmetric Mode: Part II, the Vacuum Interferometer,” Infrared Phys. 6, 75–84 (1966).
[CrossRef]

1965 (1)

J. E. Chamberlain and H. A. Gebbie, “Determination of the Refractive Index of a Solid Using a Far Infra-red Maser,” Nature 206, 602–603 (1965).
[CrossRef]

1963 (1)

J. E. Chamberlain, J. E. Gibbs, and H. A. Gebbie, “Refractometry in the Far Infra-Red Using a Two-Beam Interferometer,” Nature 198, 874–875 (1963).
[CrossRef]

1962 (2)

A. Hadni, J. Claudel, E. Decamps, X. Gerbaux, and P. Strimer, “Spectres D’Absorption de Monocristaux Dans L’infrarouge Lointain (50-1600μ), A la Temperature de L’Helium Liquide: Iodure de Cesium, Quartz, Germanium et Nitrate de Neodyme,” C. R. Acad. Sci. 255, 1595–1597 (1962).

S. Roberts and D. D. Coon, “Far-infrared properties of quartz and sapphire,” J. Opt. Soc. Am. 52, 1023–1029 (1962).
[CrossRef]

1961 (2)

W. G. Spitzer and D. A. Kleinman, “Infrared lattice bands of quartz,” Phys. Rev. 121, 1324–1335 (1961); D. A. Kleinman and W. G. Spitzer, “Theory of the optical properties of quartz in the infrared,” Phys. Rev. 125, 16–30 (1962).
[CrossRef]

R. Geick, “Der Brechungsindex Von Kristallinem und Geschmolzenem Quarz im Spektralbereich um 100μ,” Z. Phys. 161, 116–122 (1961).
[CrossRef]

1932 (1)

R. Bowling Barnes, “Measurement in the long wavelength infrared from 20 to 135 μ,” Phys. Rev. 39, 562–575 (1932).
[CrossRef]

1929 (1)

M. Czerny, “Zum Raman-Effekt Des Quarzes,” Z. Phys. 53, 317–330 (1929).
[CrossRef]

1892 (1)

H. Rubens, “Über Dispersion Ultraroten Strahlen,” Wied Ann. 45, 238–261 (1892).
[CrossRef]

Bell, E. E.

E. E. Russell and E. E. Bell, “Measurement of the optical constants of crystal quartz in the far infrared with the asymmetric Fourier-transform method,” J. Opt. Soc. Am. 57, 341–348 (1967).
[CrossRef]

E. E. Russell and E. E. Bell, “Measurement of the Far Infrared Optical Properties of Solids with a Michelson Interferometer Used in the Asymmetric Mode: Part II, the Vacuum Interferometer,” Infrared Phys. 6, 75–84 (1966).
[CrossRef]

E. E. Bell, “Measurement of the Far Infrared Optical Properties of Solids with a Michelson Interferometer Used in the Asymmetric Mode: Part I, Mathematical Formulation,” Infrared Phys. 6, 57–74 (1966).
[CrossRef]

Bell, R. J.

For an elementary description, see R. J. Bell, Introductory Fourier Transform Spectroscopy (Academic, New York, 1972), Chap. 8.

Berman, L. V.

L. V. Berman and Z. G. Zhukov, “Optical Constants of Crystalline Quartz in the Far Infrared Region,” Opt. Spektrosk. 21, 735–740 (1966) [Opt. Spectrosc. 21, 401–404 (1966)].

Bevington, Philip R.

Philip R. Bevington, Data Reduction and Analysis for the Physical Sciences, (McGraw-Hill, New York, 1969), Chap. 11.

Bowling Barnes, R.

R. Bowling Barnes, “Measurement in the long wavelength infrared from 20 to 135 μ,” Phys. Rev. 39, 562–575 (1932).
[CrossRef]

Brehat, F.

J. N. Plendl, L. C. Mansur, A. Hadni, F. Brehat, P. Henry, G. Morlot, F. Naudin, and P. Strimer, “Low Temperature Far Infrared Spectra of SiO2Polymorphs,” J. Phys. Chem. Solids 28, 1589–1597 (1967).
[CrossRef]

Chamberlain, J. E.

J. E. Chamberlain and H. A. Gebbie, “Dispersion Measurements on Polytetrafluorethylene in the Far Infrared,” Appl. Opt. 5, 393–396 (1966).
[CrossRef] [PubMed]

J. E. Chamberlain and H. A. Gebbie, “Determination of the Refractive Index of a Solid Using a Far Infra-red Maser,” Nature 206, 602–603 (1965).
[CrossRef]

J. E. Chamberlain, J. E. Gibbs, and H. A. Gebbie, “Refractometry in the Far Infra-Red Using a Two-Beam Interferometer,” Nature 198, 874–875 (1963).
[CrossRef]

Clark, O. M.

O. M. Clark, “Temperature Dependence of the Infrared Spectra of Selected Dielectrics II,” Air Force Cambridge Research Laboratories Report AFCRL 66–20 (unpublished).

Claudel, J.

A. Hadni, J. Claudel, E. Decamps, X. Gerbaux, and P. Strimer, “Spectres D’Absorption de Monocristaux Dans L’infrarouge Lointain (50-1600μ), A la Temperature de L’Helium Liquide: Iodure de Cesium, Quartz, Germanium et Nitrate de Neodyme,” C. R. Acad. Sci. 255, 1595–1597 (1962).

Coon, D. D.

Czerny, M.

M. Czerny, “Zum Raman-Effekt Des Quarzes,” Z. Phys. 53, 317–330 (1929).
[CrossRef]

Decamps, E.

A. Hadni, J. Claudel, E. Decamps, X. Gerbaux, and P. Strimer, “Spectres D’Absorption de Monocristaux Dans L’infrarouge Lointain (50-1600μ), A la Temperature de L’Helium Liquide: Iodure de Cesium, Quartz, Germanium et Nitrate de Neodyme,” C. R. Acad. Sci. 255, 1595–1597 (1962).

Gebbie, H. A.

J. E. Chamberlain and H. A. Gebbie, “Dispersion Measurements on Polytetrafluorethylene in the Far Infrared,” Appl. Opt. 5, 393–396 (1966).
[CrossRef] [PubMed]

J. E. Chamberlain and H. A. Gebbie, “Determination of the Refractive Index of a Solid Using a Far Infra-red Maser,” Nature 206, 602–603 (1965).
[CrossRef]

J. E. Chamberlain, J. E. Gibbs, and H. A. Gebbie, “Refractometry in the Far Infra-Red Using a Two-Beam Interferometer,” Nature 198, 874–875 (1963).
[CrossRef]

Geick, R.

R. Geick, “Der Brechungsindex Von Kristallinem und Geschmolzenem Quarz im Spektralbereich um 100μ,” Z. Phys. 161, 116–122 (1961).
[CrossRef]

Gerbaux, X.

A. Hadni, J. Claudel, E. Decamps, X. Gerbaux, and P. Strimer, “Spectres D’Absorption de Monocristaux Dans L’infrarouge Lointain (50-1600μ), A la Temperature de L’Helium Liquide: Iodure de Cesium, Quartz, Germanium et Nitrate de Neodyme,” C. R. Acad. Sci. 255, 1595–1597 (1962).

Gervais, F.

F. Gervais and B. Piriou, “Temperature Dependence of Transverse and Longitudinal Optic Modes in the α and β phase of Quartz,” Phys. Rev. B 11, 3944–3950 (1975).
[CrossRef]

Gibbs, J. E.

J. E. Chamberlain, J. E. Gibbs, and H. A. Gebbie, “Refractometry in the Far Infra-Red Using a Two-Beam Interferometer,” Nature 198, 874–875 (1963).
[CrossRef]

Hadni, A.

J. N. Plendl, L. C. Mansur, A. Hadni, F. Brehat, P. Henry, G. Morlot, F. Naudin, and P. Strimer, “Low Temperature Far Infrared Spectra of SiO2Polymorphs,” J. Phys. Chem. Solids 28, 1589–1597 (1967).
[CrossRef]

A. Hadni, J. Claudel, E. Decamps, X. Gerbaux, and P. Strimer, “Spectres D’Absorption de Monocristaux Dans L’infrarouge Lointain (50-1600μ), A la Temperature de L’Helium Liquide: Iodure de Cesium, Quartz, Germanium et Nitrate de Neodyme,” C. R. Acad. Sci. 255, 1595–1597 (1962).

Henry, P.

J. N. Plendl, L. C. Mansur, A. Hadni, F. Brehat, P. Henry, G. Morlot, F. Naudin, and P. Strimer, “Low Temperature Far Infrared Spectra of SiO2Polymorphs,” J. Phys. Chem. Solids 28, 1589–1597 (1967).
[CrossRef]

Kleinman, D. A.

W. G. Spitzer and D. A. Kleinman, “Infrared lattice bands of quartz,” Phys. Rev. 121, 1324–1335 (1961); D. A. Kleinman and W. G. Spitzer, “Theory of the optical properties of quartz in the infrared,” Phys. Rev. 125, 16–30 (1962).
[CrossRef]

Lazarev, A. N.

A. N. Mirgorodskii and A. N. Lazarev, “Calculation of Intensities in an α-quartz Crystal as a Method of Checking on the Shapes of the Vibrations,” Opt. Spektrosk. 34, 895–901 (1973) [Opt. Spectrosc. 34, 514–517 (1973)].

Loewenstein, E. V.

Lucovsky, G.

J. Onstott and G. Lucovsky, “Directional Dispersion of Extraordinary Optical Phonons in α-Quartz in the Frequency Domain from 380 to 640 cm−1.,” J. Phys. Chem. Solids 31, 2171–2184 (1970).
[CrossRef]

Mansur, L. C.

J. N. Plendl, L. C. Mansur, A. Hadni, F. Brehat, P. Henry, G. Morlot, F. Naudin, and P. Strimer, “Low Temperature Far Infrared Spectra of SiO2Polymorphs,” J. Phys. Chem. Solids 28, 1589–1597 (1967).
[CrossRef]

Merten, L.

L. Merten, “Zur Ultrarot-Dispersion Zweiachsiger und Einachsiger Kristalle,” Z. Naturforsch 23a, 1183–1193 (1968).

Mirgorodskii, A. N.

A. N. Mirgorodskii and A. N. Lazarev, “Calculation of Intensities in an α-quartz Crystal as a Method of Checking on the Shapes of the Vibrations,” Opt. Spektrosk. 34, 895–901 (1973) [Opt. Spectrosc. 34, 514–517 (1973)].

Morgan, R. L.

Morlot, G.

J. N. Plendl, L. C. Mansur, A. Hadni, F. Brehat, P. Henry, G. Morlot, F. Naudin, and P. Strimer, “Low Temperature Far Infrared Spectra of SiO2Polymorphs,” J. Phys. Chem. Solids 28, 1589–1597 (1967).
[CrossRef]

Naudin, F.

J. N. Plendl, L. C. Mansur, A. Hadni, F. Brehat, P. Henry, G. Morlot, F. Naudin, and P. Strimer, “Low Temperature Far Infrared Spectra of SiO2Polymorphs,” J. Phys. Chem. Solids 28, 1589–1597 (1967).
[CrossRef]

Onstott, J.

J. Onstott and G. Lucovsky, “Directional Dispersion of Extraordinary Optical Phonons in α-Quartz in the Frequency Domain from 380 to 640 cm−1.,” J. Phys. Chem. Solids 31, 2171–2184 (1970).
[CrossRef]

Piriou, B.

F. Gervais and B. Piriou, “Temperature Dependence of Transverse and Longitudinal Optic Modes in the α and β phase of Quartz,” Phys. Rev. B 11, 3944–3950 (1975).
[CrossRef]

Plendl, J. N.

J. N. Plendl, L. C. Mansur, A. Hadni, F. Brehat, P. Henry, G. Morlot, F. Naudin, and P. Strimer, “Low Temperature Far Infrared Spectra of SiO2Polymorphs,” J. Phys. Chem. Solids 28, 1589–1597 (1967).
[CrossRef]

Roberts, S.

Rubens, H.

H. Rubens, “Über Dispersion Ultraroten Strahlen,” Wied Ann. 45, 238–261 (1892).
[CrossRef]

Russell, E. E.

E. E. Russell and E. E. Bell, “Measurement of the optical constants of crystal quartz in the far infrared with the asymmetric Fourier-transform method,” J. Opt. Soc. Am. 57, 341–348 (1967).
[CrossRef]

E. E. Russell and E. E. Bell, “Measurement of the Far Infrared Optical Properties of Solids with a Michelson Interferometer Used in the Asymmetric Mode: Part II, the Vacuum Interferometer,” Infrared Phys. 6, 75–84 (1966).
[CrossRef]

Smith, D. R.

Spitzer, W. G.

W. G. Spitzer and D. A. Kleinman, “Infrared lattice bands of quartz,” Phys. Rev. 121, 1324–1335 (1961); D. A. Kleinman and W. G. Spitzer, “Theory of the optical properties of quartz in the infrared,” Phys. Rev. 125, 16–30 (1962).
[CrossRef]

Strimer, P.

J. N. Plendl, L. C. Mansur, A. Hadni, F. Brehat, P. Henry, G. Morlot, F. Naudin, and P. Strimer, “Low Temperature Far Infrared Spectra of SiO2Polymorphs,” J. Phys. Chem. Solids 28, 1589–1597 (1967).
[CrossRef]

A. Hadni, J. Claudel, E. Decamps, X. Gerbaux, and P. Strimer, “Spectres D’Absorption de Monocristaux Dans L’infrarouge Lointain (50-1600μ), A la Temperature de L’Helium Liquide: Iodure de Cesium, Quartz, Germanium et Nitrate de Neodyme,” C. R. Acad. Sci. 255, 1595–1597 (1962).

Zhukov, Z. G.

L. V. Berman and Z. G. Zhukov, “Optical Constants of Crystalline Quartz in the Far Infrared Region,” Opt. Spektrosk. 21, 735–740 (1966) [Opt. Spectrosc. 21, 401–404 (1966)].

Appl. Opt. (2)

C. R. Acad. Sci. (1)

A. Hadni, J. Claudel, E. Decamps, X. Gerbaux, and P. Strimer, “Spectres D’Absorption de Monocristaux Dans L’infrarouge Lointain (50-1600μ), A la Temperature de L’Helium Liquide: Iodure de Cesium, Quartz, Germanium et Nitrate de Neodyme,” C. R. Acad. Sci. 255, 1595–1597 (1962).

Infrared Phys. (2)

E. E. Bell, “Measurement of the Far Infrared Optical Properties of Solids with a Michelson Interferometer Used in the Asymmetric Mode: Part I, Mathematical Formulation,” Infrared Phys. 6, 57–74 (1966).
[CrossRef]

E. E. Russell and E. E. Bell, “Measurement of the Far Infrared Optical Properties of Solids with a Michelson Interferometer Used in the Asymmetric Mode: Part II, the Vacuum Interferometer,” Infrared Phys. 6, 75–84 (1966).
[CrossRef]

J. Opt. Soc. Am. (2)

J. Phys. Chem. Solids (2)

J. N. Plendl, L. C. Mansur, A. Hadni, F. Brehat, P. Henry, G. Morlot, F. Naudin, and P. Strimer, “Low Temperature Far Infrared Spectra of SiO2Polymorphs,” J. Phys. Chem. Solids 28, 1589–1597 (1967).
[CrossRef]

J. Onstott and G. Lucovsky, “Directional Dispersion of Extraordinary Optical Phonons in α-Quartz in the Frequency Domain from 380 to 640 cm−1.,” J. Phys. Chem. Solids 31, 2171–2184 (1970).
[CrossRef]

Nature (2)

J. E. Chamberlain, J. E. Gibbs, and H. A. Gebbie, “Refractometry in the Far Infra-Red Using a Two-Beam Interferometer,” Nature 198, 874–875 (1963).
[CrossRef]

J. E. Chamberlain and H. A. Gebbie, “Determination of the Refractive Index of a Solid Using a Far Infra-red Maser,” Nature 206, 602–603 (1965).
[CrossRef]

Opt. Spektrosk. (2)

L. V. Berman and Z. G. Zhukov, “Optical Constants of Crystalline Quartz in the Far Infrared Region,” Opt. Spektrosk. 21, 735–740 (1966) [Opt. Spectrosc. 21, 401–404 (1966)].

A. N. Mirgorodskii and A. N. Lazarev, “Calculation of Intensities in an α-quartz Crystal as a Method of Checking on the Shapes of the Vibrations,” Opt. Spektrosk. 34, 895–901 (1973) [Opt. Spectrosc. 34, 514–517 (1973)].

Phys. Rev. (2)

R. Bowling Barnes, “Measurement in the long wavelength infrared from 20 to 135 μ,” Phys. Rev. 39, 562–575 (1932).
[CrossRef]

W. G. Spitzer and D. A. Kleinman, “Infrared lattice bands of quartz,” Phys. Rev. 121, 1324–1335 (1961); D. A. Kleinman and W. G. Spitzer, “Theory of the optical properties of quartz in the infrared,” Phys. Rev. 125, 16–30 (1962).
[CrossRef]

Phys. Rev. B (1)

F. Gervais and B. Piriou, “Temperature Dependence of Transverse and Longitudinal Optic Modes in the α and β phase of Quartz,” Phys. Rev. B 11, 3944–3950 (1975).
[CrossRef]

Wied Ann. (1)

H. Rubens, “Über Dispersion Ultraroten Strahlen,” Wied Ann. 45, 238–261 (1892).
[CrossRef]

Z. Naturforsch (1)

L. Merten, “Zur Ultrarot-Dispersion Zweiachsiger und Einachsiger Kristalle,” Z. Naturforsch 23a, 1183–1193 (1968).

Z. Phys. (2)

M. Czerny, “Zum Raman-Effekt Des Quarzes,” Z. Phys. 53, 317–330 (1929).
[CrossRef]

R. Geick, “Der Brechungsindex Von Kristallinem und Geschmolzenem Quarz im Spektralbereich um 100μ,” Z. Phys. 161, 116–122 (1961).
[CrossRef]

Other (3)

O. M. Clark, “Temperature Dependence of the Infrared Spectra of Selected Dielectrics II,” Air Force Cambridge Research Laboratories Report AFCRL 66–20 (unpublished).

Philip R. Bevington, Data Reduction and Analysis for the Physical Sciences, (McGraw-Hill, New York, 1969), Chap. 11.

For an elementary description, see R. J. Bell, Introductory Fourier Transform Spectroscopy (Academic, New York, 1972), Chap. 8.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

FIG. 1
FIG. 1

Index of refraction for z-cut crystal quartz between 100 and 500 cm−1. The data points are shown at a resolution of 3.2 cm−1. The scatter in the smooth portion of the curve is indicative of the signal-noise ratio in the measurement.

FIG. 2
FIG. 2

Absorption coefficient for z-cut crystal quartz between 100 and 500 cm−1. The maximum value obtained for the absorption coefficient is 33 000 cm−1 at 440 cm−1. The negative values observed near the strong lines arise because no apodization was used on the interferogram.

FIG. 3
FIG. 3

Real part of the dielectric function for z-cut crystal quartz between 100 and 500 cm−1. The solid line is a fit to a sum of three oscillators, using parameters given in Table I.

FIG. 4
FIG. 4

Frequency-dependent conductivity for z-cut crystal quartz between 100 and 500 cm−1. The solid line is obtained from a sum of three oscillators, using parameters given in Table I.

Tables (1)

Tables Icon

TABLE I: Oscillator parameters for low frequency ordinary-ray optical phonons in quartz.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

( ω ) = + j = 1 N s j ω j 2 ω j 2 ω 2 i ω γ j ,
= 1 + 4 π i σ 1 / ω ,