Abstract

Three-material quarter-wave-stack and suppressed-order polarizers are investigated. Nonpolarizing edge filters are presented.

© 1980 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. MacNeille, “Beam splitter,” US Patent No.2,403,731 (Application 1April1943).
  2. M. Banning, “Practical methods of making and using multilayer filters,” J. Opt. Soc. Am. 37, 792–797 (1947).
    [Crossref] [PubMed]
  3. H. F. Mahlein, “Generalized Brewster-angle condition for quarter-wave multilayers at non-normal incidence,” J. Opt. Soc. Am. 64, 647–653 (1974).
    [Crossref]
  4. I. M. Minkov, “Theory of dielectric mirrors in obliquely incident light,” Opt. Spektrosk. 33, 332–338 (1972).
  5. P. Baumeister, “The transmission and degree of polarization of quarter-wave stacks at non-normal incidence,” Opt. Acta 8, 105–119 (1961).
    [Crossref]
  6. A. Thelen, “Nonpolarizing interference films inside a glass cube,” Appl. Opt. 15, 2983–2985 (1976).
    [Crossref] [PubMed]
  7. A. Thelen, “Multilayer filters with wide transmittance bands II,” J. Opt. Soc. Am. 63, 65–68 (1973).
    [Crossref]
  8. A. Thelen, “Equivalent layers in multilayer filters,” J. Opt. Soc. Am. 56, 1533–1538 (1966).
    [Crossref]

1976 (1)

1974 (1)

1973 (1)

1972 (1)

I. M. Minkov, “Theory of dielectric mirrors in obliquely incident light,” Opt. Spektrosk. 33, 332–338 (1972).

1966 (1)

1961 (1)

P. Baumeister, “The transmission and degree of polarization of quarter-wave stacks at non-normal incidence,” Opt. Acta 8, 105–119 (1961).
[Crossref]

1947 (1)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

FIG. 1
FIG. 1

Reflectance of the design 1.01|(H/2 LH/2)10| 1.52 in both planes of polarization; nL = 1.38, nH = 2.35, and α = 56.7°.

FIG. 2
FIG. 2

Average reflectance (R + R)/2 of the design of Fig. 1.

FIG. 3
FIG. 3

Reflectance of the polarizer design 1.0|{0.735(L/2 HL/2)}2 {0.84 (L/2 HL/2)}8 {0.735 (L/2 HL/2)}2| 1.52 with nL = 1.45, nH = 2.35, and α = 56.7°.

FIG. 4
FIG. 4

Reflectance of a design after Minkov,4 1.0|(IHIL)36| 1.5, with nL = 1.38, nI = 1.717, nH = 2.2, and α = 45°.

FIG. 5
FIG. 5

Reflectance of the polarizer design 1.0|IHIL (ILIH)6 ILILIHI| 1.52, with nL = 1.38, nI = 1.823, nH = 2.35, and α = 56.7°.

FIG. 6
FIG. 6

Reflectance of the polarizer design 1.0|ILI (LIHI)8| 1.52, with nL = 1.38, nI = 1.904, nH = 2.35, and α = 70°.

FIG. 7
FIG. 7

Equivalent index of the structure 0.4(IHLHI) with nL = 1.38, nH = 2.35, α = 56.7° in air, for two values of nI.

FIG. 8
FIG. 8

Reflectance of the polarizer design 1.0|I{0.4 (IHLHI)}νI| 1.52 with nL = 1.38, nI = 1.755, nH = 2.35, α = 56.7°, ν = 15 and 30.

FIG. 9
FIG. 9

Reflectance of a low wave-number edge filter with low polarization. 1.0|0.98Z4Z12 0.98Z4| 1.52 with Z = 2L/3 / 2H/3 / 2L/3, nL = 1.38, nI = 1.65, nH = 2.35 α = 45°.

FIG. 10
FIG. 10

Reflectance of a high wave-number edge filter with low polarization. 1.0|(0.3L0.6H0.2L0.6H0.3L)15| 1.52 with nL = 1.46, nH = 2.35, and α = 45°.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

R = ( 1 X 2 ) 2 / ( 1 + X 2 ) 2
X = ( n M / n S ) 1 / 2 ( n 2 n 4 n 6 / n 1 n 3 n 5 )
X = ( n M n S ) 1 / 2 ( n 2 n 4 n 6 / n 1 n 3 n 5 )
n = n / [ 1 ( n M sin α / n ) 2 ] 1 / 2
n = n [ 1 ( n M sin α / n ) 2 ] 1 / 2
X α X α = ( X α = 0 ) 2 .
n I = 1.643
n I = 1.755