Abstract

No abstract available.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Winslow H. Herschel, Jour. Ind. and Eng. Chem.,  12, pp. 282, 818; 1920.
    [CrossRef]
  2. Eimer and Amend, Bulletin No. 280, F. W. Shulenberger, Paint, Oil and Chemical Review,  72, p. 10, 1921; W. M. Grosvenor, U. S. Patent No. 1 236 706; August14, 1917.
  3. One “M” is therefore a deflection of 65degree of arc, but its value in viscosity is a variable, depending upon the diameter of torsion wire, amount of turbulence, etc.
  4. The instrument used was kindly loaned for the purpose by Mr. C. G. Amend of Eimer and Amend.
  5. M. Margules, Sitzungsber. Akad. Wiss. Wien,  83, part 2, p. 588; 1881.
  6. For purposes of calculation, the viscosity of a liquid may be defined as the force which will move a unit area of plane surface, with unit speed relative to another parallel plane surface, from which it is separated by a layer of the liquid of unit thickness. The term poise was first suggested by Deeley and Parr (Phil. Mag. 26, p. 87; 1913) as the name for the cgs unit of viscosity, and they added:—“In the case of a soft solid (plastic substance) the so-called viscosity is not the same for all rates of shear, whereas the viscosity of a liquid is a physical constant and should be named.” It is evident that Deeley and Parr never intended that the poise should be used as a measure of the consistency of plastic materials, and such use is to be deplored.
  7. B. Elie, Jour. de Physique,  1, p. 224; 1882.
  8. G. Zemplen, Ann. der Physik,  29, p. 869; 1909.
    [CrossRef]
  9. C. Brodmann, Wiedemann Ann. der Physik & Chemie,  45, p. 159; 1892.
    [CrossRef]
  10. M. Couette, Annales de Chemie et de Physique,  21, pp. 433, 448; 1890. A similar apparatus was used by E. Hatschek, Trans. Faraday Soc.,  9, p. 89; 1913.
    [CrossRef]
  11. L. Gilchrist, Phys. Rev.,  1, p. 124; 1913.
    [CrossRef]
  12. E. L. Harrington, Phys. Rev.,  8, p. 738; 1916.
    [CrossRef]
  13. A. Mallock, Proc. R. S.,  45, p. 126; 1888 and Phil. Trans. R. S.,  187, p. 41; 1896.
    [CrossRef]
  14. L. E. Gurney, Phys. Rev.,  26, p. 98; 1908.
  15. E. Drew, Phys. Rev.,  12, p. 114; 1901.
  16. Rayleigh, Phil. Mag.,  28, p. 619; 1914. He gives the constant as 177, which must be multiplied by 12 to give the value in the more usual units here employed.
  17. For cases of flow in pipes where much higher values than 2000 were reached without turbulence, see Winslow H. Herschel, Trans. A.S.C.E.,  84, p. 537; 1921.
  18. Rayleigh, loc. cit., p. 610.
  19. John Perry, Phil. Mag.,  35, p. 441; 1893.
    [CrossRef]
  20. B. P. Veinberg and I. A. Smirnov, Chem. Abstracts,  6, p. 3353; 1912. G. F. C. Searle, Proc. Cambridge Phil. Soc.,  16, p. 600; 1912. Kurt Molin, Proc. Cambridge Phil. Soc.,  20, p. 23; 1920.
  21. M. D. Hersey, Jour. Washington Acad. of Sciences,  6, p. 526; 1916.
  22. J. L. Hogg, Proc. Am. Acad. Arts and Sciences,  40, p. 611; 1904.
    [CrossRef]
  23. H. Tomlinson, Phil. Trans. R. S.,  177, part 2, p. 771; 1886.
  24. Winslow H. Herschel and E. W. Dean, Reports of Investigations, Bureau of Mines, Serial No. 2201; January, 1921.
  25. G. Keinath, Die Technik der elektrischen Messgeräte, pp. 13, 152; 1921.
  26. See Karl Schmiedel, Die Prüfung der Elektrizitäts-Zahler, p. 90; 1921.
  27. Kenelm Edgcumbe, Industrial electrical measuring instruments, p. 209. London. 1918.
  28. P. G. Agnew, Bulletin of the Bureau of Standards,  7, p. 48; 1911.
  29. W. Watson, A Text-book of Physics, p. 204; 1902.
  30. J. H. Poynting and J. J. Thomson, Properties of Matter, p. 83; 1903.
  31. Winslow H. Herschel, Paint, Oil and Chemical Review,  72, p. 10; October5, 1921.
  32. Winslow H. Herschel, J. O. S. A. & R. S. I.,  6, p. 875; 1922.
    [CrossRef]

1922 (1)

Winslow H. Herschel, J. O. S. A. & R. S. I.,  6, p. 875; 1922.
[CrossRef]

1921 (4)

Winslow H. Herschel, Paint, Oil and Chemical Review,  72, p. 10; October5, 1921.

G. Keinath, Die Technik der elektrischen Messgeräte, pp. 13, 152; 1921.

Eimer and Amend, Bulletin No. 280, F. W. Shulenberger, Paint, Oil and Chemical Review,  72, p. 10, 1921; W. M. Grosvenor, U. S. Patent No. 1 236 706; August14, 1917.

Eimer and Amend, Bulletin No. 280, F. W. Shulenberger, Paint, Oil and Chemical Review,  72, p. 10, 1921; W. M. Grosvenor, U. S. Patent No. 1 236 706; August14, 1917.

For cases of flow in pipes where much higher values than 2000 were reached without turbulence, see Winslow H. Herschel, Trans. A.S.C.E.,  84, p. 537; 1921.

1920 (1)

Winslow H. Herschel, Jour. Ind. and Eng. Chem.,  12, pp. 282, 818; 1920.
[CrossRef]

1916 (2)

E. L. Harrington, Phys. Rev.,  8, p. 738; 1916.
[CrossRef]

M. D. Hersey, Jour. Washington Acad. of Sciences,  6, p. 526; 1916.

1914 (1)

Rayleigh, Phil. Mag.,  28, p. 619; 1914. He gives the constant as 177, which must be multiplied by 12 to give the value in the more usual units here employed.

1913 (2)

L. Gilchrist, Phys. Rev.,  1, p. 124; 1913.
[CrossRef]

For purposes of calculation, the viscosity of a liquid may be defined as the force which will move a unit area of plane surface, with unit speed relative to another parallel plane surface, from which it is separated by a layer of the liquid of unit thickness. The term poise was first suggested by Deeley and Parr (Phil. Mag. 26, p. 87; 1913) as the name for the cgs unit of viscosity, and they added:—“In the case of a soft solid (plastic substance) the so-called viscosity is not the same for all rates of shear, whereas the viscosity of a liquid is a physical constant and should be named.” It is evident that Deeley and Parr never intended that the poise should be used as a measure of the consistency of plastic materials, and such use is to be deplored.

1912 (1)

B. P. Veinberg and I. A. Smirnov, Chem. Abstracts,  6, p. 3353; 1912. G. F. C. Searle, Proc. Cambridge Phil. Soc.,  16, p. 600; 1912. Kurt Molin, Proc. Cambridge Phil. Soc.,  20, p. 23; 1920.

1911 (1)

P. G. Agnew, Bulletin of the Bureau of Standards,  7, p. 48; 1911.

1909 (1)

G. Zemplen, Ann. der Physik,  29, p. 869; 1909.
[CrossRef]

1908 (1)

L. E. Gurney, Phys. Rev.,  26, p. 98; 1908.

1904 (1)

J. L. Hogg, Proc. Am. Acad. Arts and Sciences,  40, p. 611; 1904.
[CrossRef]

1901 (1)

E. Drew, Phys. Rev.,  12, p. 114; 1901.

1893 (1)

John Perry, Phil. Mag.,  35, p. 441; 1893.
[CrossRef]

1892 (1)

C. Brodmann, Wiedemann Ann. der Physik & Chemie,  45, p. 159; 1892.
[CrossRef]

1890 (1)

M. Couette, Annales de Chemie et de Physique,  21, pp. 433, 448; 1890. A similar apparatus was used by E. Hatschek, Trans. Faraday Soc.,  9, p. 89; 1913.
[CrossRef]

1888 (1)

A. Mallock, Proc. R. S.,  45, p. 126; 1888 and Phil. Trans. R. S.,  187, p. 41; 1896.
[CrossRef]

1886 (1)

H. Tomlinson, Phil. Trans. R. S.,  177, part 2, p. 771; 1886.

1882 (1)

B. Elie, Jour. de Physique,  1, p. 224; 1882.

1881 (1)

M. Margules, Sitzungsber. Akad. Wiss. Wien,  83, part 2, p. 588; 1881.

Agnew, P. G.

P. G. Agnew, Bulletin of the Bureau of Standards,  7, p. 48; 1911.

Amend,

Eimer and Amend, Bulletin No. 280, F. W. Shulenberger, Paint, Oil and Chemical Review,  72, p. 10, 1921; W. M. Grosvenor, U. S. Patent No. 1 236 706; August14, 1917.

Brodmann, C.

C. Brodmann, Wiedemann Ann. der Physik & Chemie,  45, p. 159; 1892.
[CrossRef]

Couette, M.

M. Couette, Annales de Chemie et de Physique,  21, pp. 433, 448; 1890. A similar apparatus was used by E. Hatschek, Trans. Faraday Soc.,  9, p. 89; 1913.
[CrossRef]

Dean, E. W.

Winslow H. Herschel and E. W. Dean, Reports of Investigations, Bureau of Mines, Serial No. 2201; January, 1921.

Drew, E.

E. Drew, Phys. Rev.,  12, p. 114; 1901.

Edgcumbe, Kenelm

Kenelm Edgcumbe, Industrial electrical measuring instruments, p. 209. London. 1918.

Eimer,

Eimer and Amend, Bulletin No. 280, F. W. Shulenberger, Paint, Oil and Chemical Review,  72, p. 10, 1921; W. M. Grosvenor, U. S. Patent No. 1 236 706; August14, 1917.

Elie, B.

B. Elie, Jour. de Physique,  1, p. 224; 1882.

Gilchrist, L.

L. Gilchrist, Phys. Rev.,  1, p. 124; 1913.
[CrossRef]

Gurney, L. E.

L. E. Gurney, Phys. Rev.,  26, p. 98; 1908.

Harrington, E. L.

E. L. Harrington, Phys. Rev.,  8, p. 738; 1916.
[CrossRef]

Herschel, Winslow H.

Winslow H. Herschel, J. O. S. A. & R. S. I.,  6, p. 875; 1922.
[CrossRef]

Winslow H. Herschel, Paint, Oil and Chemical Review,  72, p. 10; October5, 1921.

For cases of flow in pipes where much higher values than 2000 were reached without turbulence, see Winslow H. Herschel, Trans. A.S.C.E.,  84, p. 537; 1921.

Winslow H. Herschel, Jour. Ind. and Eng. Chem.,  12, pp. 282, 818; 1920.
[CrossRef]

Winslow H. Herschel and E. W. Dean, Reports of Investigations, Bureau of Mines, Serial No. 2201; January, 1921.

Hersey, M. D.

M. D. Hersey, Jour. Washington Acad. of Sciences,  6, p. 526; 1916.

Hogg, J. L.

J. L. Hogg, Proc. Am. Acad. Arts and Sciences,  40, p. 611; 1904.
[CrossRef]

Keinath, G.

G. Keinath, Die Technik der elektrischen Messgeräte, pp. 13, 152; 1921.

Mallock, A.

A. Mallock, Proc. R. S.,  45, p. 126; 1888 and Phil. Trans. R. S.,  187, p. 41; 1896.
[CrossRef]

Margules, M.

M. Margules, Sitzungsber. Akad. Wiss. Wien,  83, part 2, p. 588; 1881.

Perry, John

John Perry, Phil. Mag.,  35, p. 441; 1893.
[CrossRef]

Poynting, J. H.

J. H. Poynting and J. J. Thomson, Properties of Matter, p. 83; 1903.

Rayleigh,

Rayleigh, Phil. Mag.,  28, p. 619; 1914. He gives the constant as 177, which must be multiplied by 12 to give the value in the more usual units here employed.

Rayleigh, loc. cit., p. 610.

Schmiedel, Karl

See Karl Schmiedel, Die Prüfung der Elektrizitäts-Zahler, p. 90; 1921.

Shulenberger, F. W.

Eimer and Amend, Bulletin No. 280, F. W. Shulenberger, Paint, Oil and Chemical Review,  72, p. 10, 1921; W. M. Grosvenor, U. S. Patent No. 1 236 706; August14, 1917.

Smirnov, I. A.

B. P. Veinberg and I. A. Smirnov, Chem. Abstracts,  6, p. 3353; 1912. G. F. C. Searle, Proc. Cambridge Phil. Soc.,  16, p. 600; 1912. Kurt Molin, Proc. Cambridge Phil. Soc.,  20, p. 23; 1920.

Thomson, J. J.

J. H. Poynting and J. J. Thomson, Properties of Matter, p. 83; 1903.

Tomlinson, H.

H. Tomlinson, Phil. Trans. R. S.,  177, part 2, p. 771; 1886.

Veinberg, B. P.

B. P. Veinberg and I. A. Smirnov, Chem. Abstracts,  6, p. 3353; 1912. G. F. C. Searle, Proc. Cambridge Phil. Soc.,  16, p. 600; 1912. Kurt Molin, Proc. Cambridge Phil. Soc.,  20, p. 23; 1920.

Watson, W.

W. Watson, A Text-book of Physics, p. 204; 1902.

Zemplen, G.

G. Zemplen, Ann. der Physik,  29, p. 869; 1909.
[CrossRef]

Ann. der Physik (1)

G. Zemplen, Ann. der Physik,  29, p. 869; 1909.
[CrossRef]

Annales de Chemie et de Physique (1)

M. Couette, Annales de Chemie et de Physique,  21, pp. 433, 448; 1890. A similar apparatus was used by E. Hatschek, Trans. Faraday Soc.,  9, p. 89; 1913.
[CrossRef]

Bulletin of the Bureau of Standards (1)

P. G. Agnew, Bulletin of the Bureau of Standards,  7, p. 48; 1911.

Chem. Abstracts (1)

B. P. Veinberg and I. A. Smirnov, Chem. Abstracts,  6, p. 3353; 1912. G. F. C. Searle, Proc. Cambridge Phil. Soc.,  16, p. 600; 1912. Kurt Molin, Proc. Cambridge Phil. Soc.,  20, p. 23; 1920.

Die Technik der elektrischen Messgeräte (1)

G. Keinath, Die Technik der elektrischen Messgeräte, pp. 13, 152; 1921.

J. O. S. A. & R. S. I. (1)

Winslow H. Herschel, J. O. S. A. & R. S. I.,  6, p. 875; 1922.
[CrossRef]

Jour. de Physique (1)

B. Elie, Jour. de Physique,  1, p. 224; 1882.

Jour. Ind. and Eng. Chem. (1)

Winslow H. Herschel, Jour. Ind. and Eng. Chem.,  12, pp. 282, 818; 1920.
[CrossRef]

Jour. Washington Acad. of Sciences (1)

M. D. Hersey, Jour. Washington Acad. of Sciences,  6, p. 526; 1916.

Paint, Oil and Chemical Review (2)

Winslow H. Herschel, Paint, Oil and Chemical Review,  72, p. 10; October5, 1921.

Eimer and Amend, Bulletin No. 280, F. W. Shulenberger, Paint, Oil and Chemical Review,  72, p. 10, 1921; W. M. Grosvenor, U. S. Patent No. 1 236 706; August14, 1917.

Phil. Mag. (3)

For purposes of calculation, the viscosity of a liquid may be defined as the force which will move a unit area of plane surface, with unit speed relative to another parallel plane surface, from which it is separated by a layer of the liquid of unit thickness. The term poise was first suggested by Deeley and Parr (Phil. Mag. 26, p. 87; 1913) as the name for the cgs unit of viscosity, and they added:—“In the case of a soft solid (plastic substance) the so-called viscosity is not the same for all rates of shear, whereas the viscosity of a liquid is a physical constant and should be named.” It is evident that Deeley and Parr never intended that the poise should be used as a measure of the consistency of plastic materials, and such use is to be deplored.

Rayleigh, Phil. Mag.,  28, p. 619; 1914. He gives the constant as 177, which must be multiplied by 12 to give the value in the more usual units here employed.

John Perry, Phil. Mag.,  35, p. 441; 1893.
[CrossRef]

Phil. Trans. R. S. (1)

H. Tomlinson, Phil. Trans. R. S.,  177, part 2, p. 771; 1886.

Phys. Rev. (4)

L. E. Gurney, Phys. Rev.,  26, p. 98; 1908.

E. Drew, Phys. Rev.,  12, p. 114; 1901.

L. Gilchrist, Phys. Rev.,  1, p. 124; 1913.
[CrossRef]

E. L. Harrington, Phys. Rev.,  8, p. 738; 1916.
[CrossRef]

Proc. Am. Acad. Arts and Sciences (1)

J. L. Hogg, Proc. Am. Acad. Arts and Sciences,  40, p. 611; 1904.
[CrossRef]

Proc. R. S. (1)

A. Mallock, Proc. R. S.,  45, p. 126; 1888 and Phil. Trans. R. S.,  187, p. 41; 1896.
[CrossRef]

Sitzungsber. Akad. Wiss. Wien (1)

M. Margules, Sitzungsber. Akad. Wiss. Wien,  83, part 2, p. 588; 1881.

Trans. A.S.C.E. (1)

For cases of flow in pipes where much higher values than 2000 were reached without turbulence, see Winslow H. Herschel, Trans. A.S.C.E.,  84, p. 537; 1921.

Wiedemann Ann. der Physik & Chemie (1)

C. Brodmann, Wiedemann Ann. der Physik & Chemie,  45, p. 159; 1892.
[CrossRef]

Other (8)

One “M” is therefore a deflection of 65degree of arc, but its value in viscosity is a variable, depending upon the diameter of torsion wire, amount of turbulence, etc.

The instrument used was kindly loaned for the purpose by Mr. C. G. Amend of Eimer and Amend.

Rayleigh, loc. cit., p. 610.

Winslow H. Herschel and E. W. Dean, Reports of Investigations, Bureau of Mines, Serial No. 2201; January, 1921.

See Karl Schmiedel, Die Prüfung der Elektrizitäts-Zahler, p. 90; 1921.

Kenelm Edgcumbe, Industrial electrical measuring instruments, p. 209. London. 1918.

W. Watson, A Text-book of Physics, p. 204; 1902.

J. H. Poynting and J. J. Thomson, Properties of Matter, p. 83; 1903.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic diagram of improved MacMichael viscosimeter.

Fig. 2
Fig. 2

Arrangement of guard rings in Drew’s viscosimeter.

Fig. 3
Fig. 3

Variation in torsional modulus of elasticity with diameter of wire.

Fig. 4
Fig. 4

Determination of end effect by variation of submergence.

Fig. 5
Fig. 5

Dial readings with various viscosities and wires of different diameters.

Fig. 6
Fig. 6

Determination of deflection by the mirror and scale method.

Tables (4)

Tables Icon

Table 1 Maximum allowable deflections for composition wires

Tables Icon

Table 2 Torsional modulus of elasticity of suspending wires

Tables Icon

Table 3 Theoretical relation of absolute viscosity to deflection for different sized wires

Tables Icon

Table 4 Constants of wires obtained by calibration with oils of known viscosity

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

M = π 2 μ h d 2 2 d 1 2 N 30 ( d 2 2 d 1 2 ) = π 2 μ h N 30 C
υ b ρ μ = 2124
M d = 300 σ l π G = 16.0
Then M = Pgr
G = 5760 M l π 2 d 4 θ = 4800 M l π 2 d 4 M
t = 8 d 2 2 π l W ( d 1 2 d 0 2 ) G
μ = 30 C P g r h N π 2 = C 1 M h N
μ = C W d 1 2 M 10 t 2 h N = C 1 M h N
h + k = C 1 M μ N
μ = 75 C 1 π h N D = C 2 Δ h N D
μ = 5 C 1 θ 6 h N = C 3 θ h N
d D = tan β d D = tan ( 2 θ + β )