Abstract

The spectrum of Y xi was observed with a low-inductance vacuum spark and a laser-produced plasma in the region from 70 to 630 Å on the 10.7-m grazing-incidence spectrograph at NBS. From the identification of 40 lines, a system of 29 energy levels was determined. The level system (Cu ii isoelectronic sequence, 3d 10nl) includes the series ns (n=4 –7), np (n=4–6), nd (n=4–6), nf (n =4 – 7), and ng (n =5–8). The 4f 2F term is inverted. The observed energy levels are compared with Hartree-Fock calculations. The ionization energy is determined from the ng series (n =5 – 8) to be 1 660 000 ± 200 cm−1 (205.82 ± 0.03 eV).

© 1979 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Hinnov, “Highly ionized atoms in tokamak discharges,” Phys. Rev. A 14, 1533–1541 (1976).
    [Crossref]
  2. J. Reader, G. Luther, and N. Acquista, “Spectrum and energy levels of thirteen-Limes ionized molybdenum (Mo xiv),” J. Opt. Soc. Am. 69, 144–149 (1979).
    [Crossref]
  3. E. Alexander, M. Even-Zohar, B. S. Fraenkel, and S. Goldsmith, “Classification of Transitions in the euv Spectra of Y ix-xiii, Zr x-xiv, Nb xi-xv, and Mo xii-xvi,” J. Opt. Soc. Am. 61, 508–514 (1971).
    [Crossref]
  4. J. Reader and N. Acquista, “4s-4p Resonance Transitions in Highly Charged Cu- and Zn-like Ions,” Phys. Rev. Lett. 39, 184–187 (1977).
    [Crossref]
  5. U. Feldman, M. Swartz, and L. Cohen, “Vacuum Ultraviolet Source,” Rev. Sci. Instrum. 38, 1372–1373 (1967).
    [Crossref]
  6. L. Å. Svensson and J. O. Ekberg, “The titanium vacuum-spark spectrum from 50 to 425 Å,” Ark. Fys. 40, 145–164 (1969).
  7. J. Reader, G. L. Epstein, and J. O. Ekberg, “Spectra of Rb ii, Sr iii, Y iv, Zr v, Nb vi, and Mo vii in the Vacuum Ultraviolet,” J. Opt. Soc. Am. 62, 273–284 (1972).
    [Crossref]
  8. J. Reader and G. L. Epstein, “Analysis of the Spectrum of Quadruply Ionized Yttrium (Y v),” J. Opt. Soc. Am. 62, 619–622 (1972).
    [Crossref]
  9. R. Zalubas, J. Reader, and C. H. Corliss, “4s24p4–4s 4p5 transitions in five-times ionized yttrium (Y vi),” J. Opt. Soc. Am. 66, 35–36 (1976).
    [Crossref]
  10. B. Edlén, “Wellenlangen und Termsysteme zu den Atomspektren der Elemente Lithium, Beryllium, Bor, Kohlenstoff, Stickstoff und Sauerstoff,” Nova Acta Regiae Soc. Sci. Ups. (IV) 9, No. 6 (1934).
  11. B. Edlén, “Wavelength Measurements in the Vacuum Ultraviolet,” Rep. Prog. Phys. 26, 181–212 (1963).
    [Crossref]
  12. R. L. Kelly and L. J. Palumbo, “Atomic and Ionic Emission Lines Below 2000 Angstroms-Hydrogen Through Krypton,” Naval Research Laboratory Report 7599 (U.S. GPO, Washington, D.C., 1973).
  13. V. Kaufman and B. Edlén, “Reference Wavelengths from Atomic Spectra in the Range 15 Å to 25000 Å,” J. Phys. Chem. Ref. Data 3, 825–895 (1974).
    [Crossref]
  14. Optimization of the level values was done with the computer program ELCALC, due to L. Radziemski, Jr.
  15. A. W. Weiss, private communication, 1977.
  16. E. Luc-Koenig, “Doublet inversions in alkali-metal spectra: Relativistic and correlation effects,” Phys. Rev. A 13, 2114–2122 (1976).
    [Crossref]
  17. K. T. Cheng and Y.-K. Kim, “Energy Levels, Wavelengths, and Transition Probabilities for Cu-like ions,” At. Data Nucl. Data Tables 22, 547–563 (1978).
    [Crossref]
  18. C. Froese, “Numerical Solution of the Hartree-Fock Equations,” Can. J. Phys. 41, 1895–1910 (1963),and C. Froese-Fischer and M. Wilson, “Programs for Atomic Structure Calculations,” Argonne National Laboratory Report No. 7404 (National Technical Information Service, Springfield, VA, 22161).
    [Crossref]

1979 (1)

1978 (1)

K. T. Cheng and Y.-K. Kim, “Energy Levels, Wavelengths, and Transition Probabilities for Cu-like ions,” At. Data Nucl. Data Tables 22, 547–563 (1978).
[Crossref]

1977 (1)

J. Reader and N. Acquista, “4s-4p Resonance Transitions in Highly Charged Cu- and Zn-like Ions,” Phys. Rev. Lett. 39, 184–187 (1977).
[Crossref]

1976 (3)

E. Hinnov, “Highly ionized atoms in tokamak discharges,” Phys. Rev. A 14, 1533–1541 (1976).
[Crossref]

E. Luc-Koenig, “Doublet inversions in alkali-metal spectra: Relativistic and correlation effects,” Phys. Rev. A 13, 2114–2122 (1976).
[Crossref]

R. Zalubas, J. Reader, and C. H. Corliss, “4s24p4–4s 4p5 transitions in five-times ionized yttrium (Y vi),” J. Opt. Soc. Am. 66, 35–36 (1976).
[Crossref]

1974 (1)

V. Kaufman and B. Edlén, “Reference Wavelengths from Atomic Spectra in the Range 15 Å to 25000 Å,” J. Phys. Chem. Ref. Data 3, 825–895 (1974).
[Crossref]

1972 (2)

1971 (1)

1969 (1)

L. Å. Svensson and J. O. Ekberg, “The titanium vacuum-spark spectrum from 50 to 425 Å,” Ark. Fys. 40, 145–164 (1969).

1967 (1)

U. Feldman, M. Swartz, and L. Cohen, “Vacuum Ultraviolet Source,” Rev. Sci. Instrum. 38, 1372–1373 (1967).
[Crossref]

1963 (2)

B. Edlén, “Wavelength Measurements in the Vacuum Ultraviolet,” Rep. Prog. Phys. 26, 181–212 (1963).
[Crossref]

C. Froese, “Numerical Solution of the Hartree-Fock Equations,” Can. J. Phys. 41, 1895–1910 (1963),and C. Froese-Fischer and M. Wilson, “Programs for Atomic Structure Calculations,” Argonne National Laboratory Report No. 7404 (National Technical Information Service, Springfield, VA, 22161).
[Crossref]

1934 (1)

B. Edlén, “Wellenlangen und Termsysteme zu den Atomspektren der Elemente Lithium, Beryllium, Bor, Kohlenstoff, Stickstoff und Sauerstoff,” Nova Acta Regiae Soc. Sci. Ups. (IV) 9, No. 6 (1934).

Acquista, N.

J. Reader, G. Luther, and N. Acquista, “Spectrum and energy levels of thirteen-Limes ionized molybdenum (Mo xiv),” J. Opt. Soc. Am. 69, 144–149 (1979).
[Crossref]

J. Reader and N. Acquista, “4s-4p Resonance Transitions in Highly Charged Cu- and Zn-like Ions,” Phys. Rev. Lett. 39, 184–187 (1977).
[Crossref]

Alexander, E.

Cheng, K. T.

K. T. Cheng and Y.-K. Kim, “Energy Levels, Wavelengths, and Transition Probabilities for Cu-like ions,” At. Data Nucl. Data Tables 22, 547–563 (1978).
[Crossref]

Cohen, L.

U. Feldman, M. Swartz, and L. Cohen, “Vacuum Ultraviolet Source,” Rev. Sci. Instrum. 38, 1372–1373 (1967).
[Crossref]

Corliss, C. H.

Edlén, B.

V. Kaufman and B. Edlén, “Reference Wavelengths from Atomic Spectra in the Range 15 Å to 25000 Å,” J. Phys. Chem. Ref. Data 3, 825–895 (1974).
[Crossref]

B. Edlén, “Wavelength Measurements in the Vacuum Ultraviolet,” Rep. Prog. Phys. 26, 181–212 (1963).
[Crossref]

B. Edlén, “Wellenlangen und Termsysteme zu den Atomspektren der Elemente Lithium, Beryllium, Bor, Kohlenstoff, Stickstoff und Sauerstoff,” Nova Acta Regiae Soc. Sci. Ups. (IV) 9, No. 6 (1934).

Ekberg, J. O.

J. Reader, G. L. Epstein, and J. O. Ekberg, “Spectra of Rb ii, Sr iii, Y iv, Zr v, Nb vi, and Mo vii in the Vacuum Ultraviolet,” J. Opt. Soc. Am. 62, 273–284 (1972).
[Crossref]

L. Å. Svensson and J. O. Ekberg, “The titanium vacuum-spark spectrum from 50 to 425 Å,” Ark. Fys. 40, 145–164 (1969).

Epstein, G. L.

Even-Zohar, M.

Feldman, U.

U. Feldman, M. Swartz, and L. Cohen, “Vacuum Ultraviolet Source,” Rev. Sci. Instrum. 38, 1372–1373 (1967).
[Crossref]

Fraenkel, B. S.

Froese, C.

C. Froese, “Numerical Solution of the Hartree-Fock Equations,” Can. J. Phys. 41, 1895–1910 (1963),and C. Froese-Fischer and M. Wilson, “Programs for Atomic Structure Calculations,” Argonne National Laboratory Report No. 7404 (National Technical Information Service, Springfield, VA, 22161).
[Crossref]

Goldsmith, S.

Hinnov, E.

E. Hinnov, “Highly ionized atoms in tokamak discharges,” Phys. Rev. A 14, 1533–1541 (1976).
[Crossref]

Kaufman, V.

V. Kaufman and B. Edlén, “Reference Wavelengths from Atomic Spectra in the Range 15 Å to 25000 Å,” J. Phys. Chem. Ref. Data 3, 825–895 (1974).
[Crossref]

Kelly, R. L.

R. L. Kelly and L. J. Palumbo, “Atomic and Ionic Emission Lines Below 2000 Angstroms-Hydrogen Through Krypton,” Naval Research Laboratory Report 7599 (U.S. GPO, Washington, D.C., 1973).

Kim, Y.-K.

K. T. Cheng and Y.-K. Kim, “Energy Levels, Wavelengths, and Transition Probabilities for Cu-like ions,” At. Data Nucl. Data Tables 22, 547–563 (1978).
[Crossref]

Luc-Koenig, E.

E. Luc-Koenig, “Doublet inversions in alkali-metal spectra: Relativistic and correlation effects,” Phys. Rev. A 13, 2114–2122 (1976).
[Crossref]

Luther, G.

Palumbo, L. J.

R. L. Kelly and L. J. Palumbo, “Atomic and Ionic Emission Lines Below 2000 Angstroms-Hydrogen Through Krypton,” Naval Research Laboratory Report 7599 (U.S. GPO, Washington, D.C., 1973).

Reader, J.

Svensson, L. Å.

L. Å. Svensson and J. O. Ekberg, “The titanium vacuum-spark spectrum from 50 to 425 Å,” Ark. Fys. 40, 145–164 (1969).

Swartz, M.

U. Feldman, M. Swartz, and L. Cohen, “Vacuum Ultraviolet Source,” Rev. Sci. Instrum. 38, 1372–1373 (1967).
[Crossref]

Weiss, A. W.

A. W. Weiss, private communication, 1977.

Zalubas, R.

Ark. Fys. (1)

L. Å. Svensson and J. O. Ekberg, “The titanium vacuum-spark spectrum from 50 to 425 Å,” Ark. Fys. 40, 145–164 (1969).

At. Data Nucl. Data Tables (1)

K. T. Cheng and Y.-K. Kim, “Energy Levels, Wavelengths, and Transition Probabilities for Cu-like ions,” At. Data Nucl. Data Tables 22, 547–563 (1978).
[Crossref]

Can. J. Phys. (1)

C. Froese, “Numerical Solution of the Hartree-Fock Equations,” Can. J. Phys. 41, 1895–1910 (1963),and C. Froese-Fischer and M. Wilson, “Programs for Atomic Structure Calculations,” Argonne National Laboratory Report No. 7404 (National Technical Information Service, Springfield, VA, 22161).
[Crossref]

J. Opt. Soc. Am. (5)

J. Phys. Chem. Ref. Data (1)

V. Kaufman and B. Edlén, “Reference Wavelengths from Atomic Spectra in the Range 15 Å to 25000 Å,” J. Phys. Chem. Ref. Data 3, 825–895 (1974).
[Crossref]

Nova Acta Regiae Soc. Sci. Ups. (IV) (1)

B. Edlén, “Wellenlangen und Termsysteme zu den Atomspektren der Elemente Lithium, Beryllium, Bor, Kohlenstoff, Stickstoff und Sauerstoff,” Nova Acta Regiae Soc. Sci. Ups. (IV) 9, No. 6 (1934).

Phys. Rev. A (2)

E. Hinnov, “Highly ionized atoms in tokamak discharges,” Phys. Rev. A 14, 1533–1541 (1976).
[Crossref]

E. Luc-Koenig, “Doublet inversions in alkali-metal spectra: Relativistic and correlation effects,” Phys. Rev. A 13, 2114–2122 (1976).
[Crossref]

Phys. Rev. Lett. (1)

J. Reader and N. Acquista, “4s-4p Resonance Transitions in Highly Charged Cu- and Zn-like Ions,” Phys. Rev. Lett. 39, 184–187 (1977).
[Crossref]

Rep. Prog. Phys. (1)

B. Edlén, “Wavelength Measurements in the Vacuum Ultraviolet,” Rep. Prog. Phys. 26, 181–212 (1963).
[Crossref]

Rev. Sci. Instrum. (1)

U. Feldman, M. Swartz, and L. Cohen, “Vacuum Ultraviolet Source,” Rev. Sci. Instrum. 38, 1372–1373 (1967).
[Crossref]

Other (3)

R. L. Kelly and L. J. Palumbo, “Atomic and Ionic Emission Lines Below 2000 Angstroms-Hydrogen Through Krypton,” Naval Research Laboratory Report 7599 (U.S. GPO, Washington, D.C., 1973).

Optimization of the level values was done with the computer program ELCALC, due to L. Radziemski, Jr.

A. W. Weiss, private communication, 1977.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (1)

FIG. 1
FIG. 1

Grotrian diagram for Y xi. Wavelengths are in Å. Intensities are indicated in parentheses following the wavelengths. Wavelengths of the 4s-5p and 4s-6p transitions are those calculated from the optimized level values.

Tables (5)

Tables Icon

TABLE I Observed lines of Y xi. Symbols: h—hazy, p—perturbed by close line

Tables Icon

TABLE II Energy levels of Y xi

Tables Icon

TABLE III Wavelengths of selected Y xi lines as calculated from optimized level values

Tables Icon

TABLE IV Energy parameters in cm−1 for Y xi

Tables Icon

TABLE V Values for the ionization energy of Y xi determined from various series. The adopted value of the ionization energy is 1 660000 ± 200cm−1