Abstract

To demonstrate that eye movements have profound effects on the sine-wave contrast threshold, the author uses a new method of stabilizing the retinal image, in which the Purkinje reflections from the eye move the stimulus pattern displayed on a CRT screen. Calibration of this compensatory motion is very critical; a gain error greater than 1% may produce significant destabilization. Under optimum conditions, image stabilization elevates the subject’s contrast threshold by a factor of about 20; it also produces after-images with resolution greater than 12 c/deg. These results compare favorably with those obtained by other methods.

© 1979 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. W. Ditchburn, Eye-movements and Visual Perception (Clarendon, Oxford, 1973), p. 142.
  2. J. Krauskopf, “Effect of retinal image motion on contrast thresholds for maintained vision,” J. Opt. Soc. Am. 47, 740–744 (1957).
    [Crossref] [PubMed]
  3. R. W. Ditchburn, D. H. Fender, and Stella Mayne, “Vision with controlled movements of the retinal image,” J. Physiol. (London) 145, 98–107 (1959).
  4. Ü. Tulunay-Keesey and L. A. Riggs, “Visibility of Mach bands with imposed motions of the retinal image,” J. Opt. Soc. Am. 52, 719–720 (1962).
    [Crossref]
  5. A. L. Yarbus, Eye-movements and Vision (Plenum, New York, 1967), p. 86.
  6. R. W. Ditchburn and A. E. Drysdale, “The effect of retinal image movements on vision. II. Oscillatory movements,” Proc. R. Soc. Lond. B 197, 385–406 (1977).
    [Crossref]
  7. R. W. Ditchburn and B. L. Ginsborg, “Vision with a stabilized retinal image,” Nature (Lond.) 170, 36–37 (1952).
    [Crossref]
  8. L. A. Riggs, F. Ratliff, J. C. Cornsweet, and T. N. Cornsweet, “Disappearance of steadily fixated test objects,” J. Opt. Soc. Am. 43, 495–501 (1953).
    [Crossref] [PubMed]
  9. L. A. Riggs, personal communication.
  10. H. D. Crane and C. M. Steele, “Accurate three-dimensional eyetracker,” Appl. Opt. 17, 691–705 (1978).
    [Crossref] [PubMed]
  11. T. N. Cornsweet and H. D. Crane, “Accurate two-dimensional eye tracker using first and fourth Purkinje images,” J. Opt. Soc. Am. 63, 921–928 (1973).
    [Crossref] [PubMed]
  12. D. H. Kelly, “Visual contrast sensitivity,” Opt. Acta 24, 107–129 (1977).
    [Crossref]
  13. J. G. Robson, “Spatial and temporal contrast-sensitivity functions of the visual system,” J. Opt. Soc. Am. 56, 1141–1142 (1966).
    [Crossref]
  14. D. H. Kelly, “Frequency doubling in visual responses,” J. Opt. Soc. Am. 56, 1628–1633 (1966).
    [Crossref]
  15. F. L. van Nes, J. J. Koenderink, H. Nas, and M. A. Bouman, “Spatiotemporal modulation transfer in the human eye,” J. Opt. Soc. Am. 57, 1082–1088 (1967).
    [Crossref] [PubMed]
  16. D. H. Kelly, “Adaptation effects on spatio-temporal sine-wave thresholds,” Vision Res. 12, 89–101 (1972).
    [Crossref] [PubMed]
  17. J. J. Koenderink, M. A. Bouman, A. E. Bueno de Mesquita, and S. Slappendel, “Perimetry of contrast detection thresholds of moving spatial sine wave patterns,” J. Opt. Soc. Am. 68, 845–865 (1978).
    [Crossref] [PubMed]
  18. H. D. Crane and T. N. Cornsweet, “Ocular focus stimulator,” J. Opt. Soc. Am. 60, 577 (1970).
  19. D. H. Kelly and R. E. Savoie, “A study of sine-wave contrast sensitivity by two psychophysical methods,” Percept. Psychophys. 14, 313–318 (1973).
    [Crossref]
  20. See, for example, L. A. Riggs and S. U. Tulunay, “Visual effects of vnrying the extent of compensation for eye movements,” J. Opt. Soc. Am. 49, 741–745 (1959).
    [Crossref] [PubMed]
  21. Ref. 1, p. 129.
  22. In subsequent papers of this series, we will consider other evidence that contrast thresholds are controlled by retinal receptive fields.
  23. H. D. Crane and T. P. Piantanida, unpublished communication (1978).
  24. H. D. Crane and M. R. Clark, “Three dimensional visual stimulus deflector,” Appl. Opt. 17, 706–714 (1978).
    [Crossref] [PubMed]
  25. Ü. Tulunay-Keesey and R. M. Jones, “The effect of micromovements of the eye and exposure duration on contrast sensitivity,” Vision Res. 16, 481–488 (1976).
    [Crossref] [PubMed]
  26. D. S. Gilbert and D. H. Fender, “Contrast thresholds measured with stabilized and non-stabilized sine-wave gratings,” Opt. Acta 16, 191–204 (1969).
    [Crossref]
  27. A. Watanabe, T. Mori, S. Nagata, and K. Hiwatashi, “Spatial sine-wave responses of the human visual system,” Vision Res. 8, 1245–1263 (1968).
    [Crossref] [PubMed]
  28. L. A. Riggs and B. R. Wooten, unpublished communication (1977).
  29. The form of the normal contrast sensitivity curve, and the effects of various parameters upon it, are discussed extensively in Ref. 12.
  30. J. J. Koenderink, “Contrast enhancement and the negative afterimage,” J. Opt. Soc. Am. 62, 685–689 (1972).
    [Crossref] [PubMed]
  31. V. Virsu and P. Laurinen, “Long-lasting afterimages caused by neural adaptation,” Vision Res. 17, 853–860 (1977).
    [Crossref] [PubMed]
  32. D. H. Kelly, “New method of stabilizing retinal images,” J. Opt. Soc. Am. 65, 1184, abstract (1973).
  33. In some unpublished experiments conducted in this laboratory, H. D. Crane and T. P. Piantanida have found that the luminance of a stabilized reflectance pattern can be changed rapidly (e.g., by flickering the light source at rates above 10 Hz) without restoring its visibility, as long as the contrast of the pattern is held constant. This result is just what would be expected from the kind of retinal masking described here.

1978 (3)

1977 (3)

V. Virsu and P. Laurinen, “Long-lasting afterimages caused by neural adaptation,” Vision Res. 17, 853–860 (1977).
[Crossref] [PubMed]

D. H. Kelly, “Visual contrast sensitivity,” Opt. Acta 24, 107–129 (1977).
[Crossref]

R. W. Ditchburn and A. E. Drysdale, “The effect of retinal image movements on vision. II. Oscillatory movements,” Proc. R. Soc. Lond. B 197, 385–406 (1977).
[Crossref]

1976 (1)

Ü. Tulunay-Keesey and R. M. Jones, “The effect of micromovements of the eye and exposure duration on contrast sensitivity,” Vision Res. 16, 481–488 (1976).
[Crossref] [PubMed]

1973 (3)

D. H. Kelly, “New method of stabilizing retinal images,” J. Opt. Soc. Am. 65, 1184, abstract (1973).

T. N. Cornsweet and H. D. Crane, “Accurate two-dimensional eye tracker using first and fourth Purkinje images,” J. Opt. Soc. Am. 63, 921–928 (1973).
[Crossref] [PubMed]

D. H. Kelly and R. E. Savoie, “A study of sine-wave contrast sensitivity by two psychophysical methods,” Percept. Psychophys. 14, 313–318 (1973).
[Crossref]

1972 (2)

D. H. Kelly, “Adaptation effects on spatio-temporal sine-wave thresholds,” Vision Res. 12, 89–101 (1972).
[Crossref] [PubMed]

J. J. Koenderink, “Contrast enhancement and the negative afterimage,” J. Opt. Soc. Am. 62, 685–689 (1972).
[Crossref] [PubMed]

1970 (1)

1969 (1)

D. S. Gilbert and D. H. Fender, “Contrast thresholds measured with stabilized and non-stabilized sine-wave gratings,” Opt. Acta 16, 191–204 (1969).
[Crossref]

1968 (1)

A. Watanabe, T. Mori, S. Nagata, and K. Hiwatashi, “Spatial sine-wave responses of the human visual system,” Vision Res. 8, 1245–1263 (1968).
[Crossref] [PubMed]

1967 (1)

1966 (2)

1962 (1)

1959 (2)

R. W. Ditchburn, D. H. Fender, and Stella Mayne, “Vision with controlled movements of the retinal image,” J. Physiol. (London) 145, 98–107 (1959).

See, for example, L. A. Riggs and S. U. Tulunay, “Visual effects of vnrying the extent of compensation for eye movements,” J. Opt. Soc. Am. 49, 741–745 (1959).
[Crossref] [PubMed]

1957 (1)

1953 (1)

1952 (1)

R. W. Ditchburn and B. L. Ginsborg, “Vision with a stabilized retinal image,” Nature (Lond.) 170, 36–37 (1952).
[Crossref]

Bouman, M. A.

Bueno de Mesquita, A. E.

Clark, M. R.

Cornsweet, J. C.

Cornsweet, T. N.

Crane, H. D.

Ditchburn, R. W.

R. W. Ditchburn and A. E. Drysdale, “The effect of retinal image movements on vision. II. Oscillatory movements,” Proc. R. Soc. Lond. B 197, 385–406 (1977).
[Crossref]

R. W. Ditchburn, D. H. Fender, and Stella Mayne, “Vision with controlled movements of the retinal image,” J. Physiol. (London) 145, 98–107 (1959).

R. W. Ditchburn and B. L. Ginsborg, “Vision with a stabilized retinal image,” Nature (Lond.) 170, 36–37 (1952).
[Crossref]

R. W. Ditchburn, Eye-movements and Visual Perception (Clarendon, Oxford, 1973), p. 142.

Drysdale, A. E.

R. W. Ditchburn and A. E. Drysdale, “The effect of retinal image movements on vision. II. Oscillatory movements,” Proc. R. Soc. Lond. B 197, 385–406 (1977).
[Crossref]

Fender, D. H.

D. S. Gilbert and D. H. Fender, “Contrast thresholds measured with stabilized and non-stabilized sine-wave gratings,” Opt. Acta 16, 191–204 (1969).
[Crossref]

R. W. Ditchburn, D. H. Fender, and Stella Mayne, “Vision with controlled movements of the retinal image,” J. Physiol. (London) 145, 98–107 (1959).

Gilbert, D. S.

D. S. Gilbert and D. H. Fender, “Contrast thresholds measured with stabilized and non-stabilized sine-wave gratings,” Opt. Acta 16, 191–204 (1969).
[Crossref]

Ginsborg, B. L.

R. W. Ditchburn and B. L. Ginsborg, “Vision with a stabilized retinal image,” Nature (Lond.) 170, 36–37 (1952).
[Crossref]

Hiwatashi, K.

A. Watanabe, T. Mori, S. Nagata, and K. Hiwatashi, “Spatial sine-wave responses of the human visual system,” Vision Res. 8, 1245–1263 (1968).
[Crossref] [PubMed]

Jones, R. M.

Ü. Tulunay-Keesey and R. M. Jones, “The effect of micromovements of the eye and exposure duration on contrast sensitivity,” Vision Res. 16, 481–488 (1976).
[Crossref] [PubMed]

Kelly, D. H.

D. H. Kelly, “Visual contrast sensitivity,” Opt. Acta 24, 107–129 (1977).
[Crossref]

D. H. Kelly and R. E. Savoie, “A study of sine-wave contrast sensitivity by two psychophysical methods,” Percept. Psychophys. 14, 313–318 (1973).
[Crossref]

D. H. Kelly, “New method of stabilizing retinal images,” J. Opt. Soc. Am. 65, 1184, abstract (1973).

D. H. Kelly, “Adaptation effects on spatio-temporal sine-wave thresholds,” Vision Res. 12, 89–101 (1972).
[Crossref] [PubMed]

D. H. Kelly, “Frequency doubling in visual responses,” J. Opt. Soc. Am. 56, 1628–1633 (1966).
[Crossref]

Koenderink, J. J.

Krauskopf, J.

Laurinen, P.

V. Virsu and P. Laurinen, “Long-lasting afterimages caused by neural adaptation,” Vision Res. 17, 853–860 (1977).
[Crossref] [PubMed]

Mayne, Stella

R. W. Ditchburn, D. H. Fender, and Stella Mayne, “Vision with controlled movements of the retinal image,” J. Physiol. (London) 145, 98–107 (1959).

Mori, T.

A. Watanabe, T. Mori, S. Nagata, and K. Hiwatashi, “Spatial sine-wave responses of the human visual system,” Vision Res. 8, 1245–1263 (1968).
[Crossref] [PubMed]

Nagata, S.

A. Watanabe, T. Mori, S. Nagata, and K. Hiwatashi, “Spatial sine-wave responses of the human visual system,” Vision Res. 8, 1245–1263 (1968).
[Crossref] [PubMed]

Nas, H.

Piantanida, T. P.

H. D. Crane and T. P. Piantanida, unpublished communication (1978).

Ratliff, F.

Riggs, L. A.

Robson, J. G.

Savoie, R. E.

D. H. Kelly and R. E. Savoie, “A study of sine-wave contrast sensitivity by two psychophysical methods,” Percept. Psychophys. 14, 313–318 (1973).
[Crossref]

Slappendel, S.

Steele, C. M.

Tulunay, S. U.

Tulunay-Keesey, Ü.

Ü. Tulunay-Keesey and R. M. Jones, “The effect of micromovements of the eye and exposure duration on contrast sensitivity,” Vision Res. 16, 481–488 (1976).
[Crossref] [PubMed]

Ü. Tulunay-Keesey and L. A. Riggs, “Visibility of Mach bands with imposed motions of the retinal image,” J. Opt. Soc. Am. 52, 719–720 (1962).
[Crossref]

van Nes, F. L.

Virsu, V.

V. Virsu and P. Laurinen, “Long-lasting afterimages caused by neural adaptation,” Vision Res. 17, 853–860 (1977).
[Crossref] [PubMed]

Watanabe, A.

A. Watanabe, T. Mori, S. Nagata, and K. Hiwatashi, “Spatial sine-wave responses of the human visual system,” Vision Res. 8, 1245–1263 (1968).
[Crossref] [PubMed]

Wooten, B. R.

L. A. Riggs and B. R. Wooten, unpublished communication (1977).

Yarbus, A. L.

A. L. Yarbus, Eye-movements and Vision (Plenum, New York, 1967), p. 86.

Appl. Opt. (2)

J. Opt. Soc. Am. (12)

J. J. Koenderink, “Contrast enhancement and the negative afterimage,” J. Opt. Soc. Am. 62, 685–689 (1972).
[Crossref] [PubMed]

D. H. Kelly, “New method of stabilizing retinal images,” J. Opt. Soc. Am. 65, 1184, abstract (1973).

See, for example, L. A. Riggs and S. U. Tulunay, “Visual effects of vnrying the extent of compensation for eye movements,” J. Opt. Soc. Am. 49, 741–745 (1959).
[Crossref] [PubMed]

T. N. Cornsweet and H. D. Crane, “Accurate two-dimensional eye tracker using first and fourth Purkinje images,” J. Opt. Soc. Am. 63, 921–928 (1973).
[Crossref] [PubMed]

J. J. Koenderink, M. A. Bouman, A. E. Bueno de Mesquita, and S. Slappendel, “Perimetry of contrast detection thresholds of moving spatial sine wave patterns,” J. Opt. Soc. Am. 68, 845–865 (1978).
[Crossref] [PubMed]

H. D. Crane and T. N. Cornsweet, “Ocular focus stimulator,” J. Opt. Soc. Am. 60, 577 (1970).

J. G. Robson, “Spatial and temporal contrast-sensitivity functions of the visual system,” J. Opt. Soc. Am. 56, 1141–1142 (1966).
[Crossref]

D. H. Kelly, “Frequency doubling in visual responses,” J. Opt. Soc. Am. 56, 1628–1633 (1966).
[Crossref]

F. L. van Nes, J. J. Koenderink, H. Nas, and M. A. Bouman, “Spatiotemporal modulation transfer in the human eye,” J. Opt. Soc. Am. 57, 1082–1088 (1967).
[Crossref] [PubMed]

J. Krauskopf, “Effect of retinal image motion on contrast thresholds for maintained vision,” J. Opt. Soc. Am. 47, 740–744 (1957).
[Crossref] [PubMed]

Ü. Tulunay-Keesey and L. A. Riggs, “Visibility of Mach bands with imposed motions of the retinal image,” J. Opt. Soc. Am. 52, 719–720 (1962).
[Crossref]

L. A. Riggs, F. Ratliff, J. C. Cornsweet, and T. N. Cornsweet, “Disappearance of steadily fixated test objects,” J. Opt. Soc. Am. 43, 495–501 (1953).
[Crossref] [PubMed]

J. Physiol. (London) (1)

R. W. Ditchburn, D. H. Fender, and Stella Mayne, “Vision with controlled movements of the retinal image,” J. Physiol. (London) 145, 98–107 (1959).

Nature (Lond.) (1)

R. W. Ditchburn and B. L. Ginsborg, “Vision with a stabilized retinal image,” Nature (Lond.) 170, 36–37 (1952).
[Crossref]

Opt. Acta (2)

D. S. Gilbert and D. H. Fender, “Contrast thresholds measured with stabilized and non-stabilized sine-wave gratings,” Opt. Acta 16, 191–204 (1969).
[Crossref]

D. H. Kelly, “Visual contrast sensitivity,” Opt. Acta 24, 107–129 (1977).
[Crossref]

Percept. Psychophys. (1)

D. H. Kelly and R. E. Savoie, “A study of sine-wave contrast sensitivity by two psychophysical methods,” Percept. Psychophys. 14, 313–318 (1973).
[Crossref]

Proc. R. Soc. Lond. B (1)

R. W. Ditchburn and A. E. Drysdale, “The effect of retinal image movements on vision. II. Oscillatory movements,” Proc. R. Soc. Lond. B 197, 385–406 (1977).
[Crossref]

Vision Res. (4)

D. H. Kelly, “Adaptation effects on spatio-temporal sine-wave thresholds,” Vision Res. 12, 89–101 (1972).
[Crossref] [PubMed]

A. Watanabe, T. Mori, S. Nagata, and K. Hiwatashi, “Spatial sine-wave responses of the human visual system,” Vision Res. 8, 1245–1263 (1968).
[Crossref] [PubMed]

V. Virsu and P. Laurinen, “Long-lasting afterimages caused by neural adaptation,” Vision Res. 17, 853–860 (1977).
[Crossref] [PubMed]

Ü. Tulunay-Keesey and R. M. Jones, “The effect of micromovements of the eye and exposure duration on contrast sensitivity,” Vision Res. 16, 481–488 (1976).
[Crossref] [PubMed]

Other (9)

In some unpublished experiments conducted in this laboratory, H. D. Crane and T. P. Piantanida have found that the luminance of a stabilized reflectance pattern can be changed rapidly (e.g., by flickering the light source at rates above 10 Hz) without restoring its visibility, as long as the contrast of the pattern is held constant. This result is just what would be expected from the kind of retinal masking described here.

L. A. Riggs and B. R. Wooten, unpublished communication (1977).

The form of the normal contrast sensitivity curve, and the effects of various parameters upon it, are discussed extensively in Ref. 12.

Ref. 1, p. 129.

In subsequent papers of this series, we will consider other evidence that contrast thresholds are controlled by retinal receptive fields.

H. D. Crane and T. P. Piantanida, unpublished communication (1978).

R. W. Ditchburn, Eye-movements and Visual Perception (Clarendon, Oxford, 1973), p. 142.

L. A. Riggs, personal communication.

A. L. Yarbus, Eye-movements and Vision (Plenum, New York, 1967), p. 86.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

FIG. 1
FIG. 1

Typical sine-wave grating used as a stimulus in this series of papers. When stabilized, the grating moves horizontally behind a 7.5°, circular aperture (the aperture is not stabilized).

FIG. 2
FIG. 2

Luminance profile across two successive frames of the CRT display. During each blanking interval, the waveform generator is triggered with a delay controlled by the eyetracker output signal. Each frame lasts 1 ms.

FIG. 3
FIG. 3

Overall view of the stabilization apparatus. The electro-optical system in the foreground is the Purkinje eyetracker; the rest of the equipment provides the stimulus patterns and records the threshold settings. The console under the subject’s hand controls the contrast, fixation lights, stabilization gain and bias, imposed drift, and response recording. The subject can also switch on a calibration line, or switch any pattern to an unstabilized condition.

FIG. 4
FIG. 4

Schematic diagram of the eyetracker and CRT display. The first servo mirror deflects both the first and fourth Purkinje images, but tracks only the first. Thus the second mirror, which tracks only the fourth image, rotates when the separation between the two images changes, i.e., when the eye rotates. This signal is used to move the stimulus pattern on the CRT.

FIG. 5
FIG. 5

Eye-tracker output, in millivolts per degree of eye rotation, for various settings of the subject’s gain-control potentiometer. To obtain the best stabilization, these two subjects obviously need different potentiometer settings. Arrows show the settings they chose by using an after-image optimization method.

FIG. 6
FIG. 6

Three sine-wave contrast sensitivity curves obtained with varying degrees of stabilization, for subject DK. Filled circles show his normal, unstabilized contrast sensitivity. Open squares were obtained with his optimum gain setting; open circles, with the gain changed about 5%. In the region from 2–5 c/deg, this small change increased his contrast sensitivity by a factor of 4 or more.

FIG. 7
FIG. 7

Stabilized and unstabilized contrast sensitivity curves for subject LAR. He is slightly more sensitive than subject DK, but with optimum stabilization, his threshold-elevation ratios are essentially the same (compare Fig. 6).

FIG. 8
FIG. 8

Same as Figs. 6 and 7, but with a much younger subject, at his optimum gain setting (see text).

FIG. 9
FIG. 9

Comparison of threshold elevations produced by four different stabilization techniques described in the text. Open circles, stabilized; filled circles, unstabilized. (a) Ref. 25, (b) Ref. 26, (c) Ref. 27, (d) A further set of data obtained with our technique, subject DK.

FIG. 10
FIG. 10

Strength of the sensitivity mask that is formed during stabilization of the retinal image. These measurements were obtained by the threshold-after-image technique described in the text. Filled squares, subject MC; open squares, subject DK; dashed line, similar data from Ref. 30.