Abstract

The available diffraction-corona theory for the interpretation of the cloud iridescence phenomenon is reviewed and applied to photographic observations of an iridescent contrail. It is concluded that the simple-diffraction theory qualitatively explains the occurrence of corona and iridescence under the cloud microphysical conditions with which these phenomena are typically associated, and that the theoretical predictions of cloud droplet diameters of 1–3 µm during initial contrail formation appear to be reasonable for a highly supersaturated environment. However, additional Mie theory simulations utilizing narrow droplet size distributions should be performed to assess the impact of anomalous diffraction in realistic cloud compositions in order that iridescence observations may be more precisely interpreted for cloud microphysical studies.

© 1979 Optical Society of America

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription