Abstract

Binocular contrast interactions in human vision were studied psychophysically. Thresholds were obtained for sinewave grating stimulation of the right eye in the presence of simultaneous masking gratings presented to the right eye (monocular masking) or left eye (dichoptic masking). In the first experiment, thresholds were measured at 0.25, 1.0, 4.0, and 16.0 cycle per degree (cpd) as a function of the contrast of masking gratings of identical frequency and phase. Thresholds rose nonmonotonically with masking contrast. At medium and high contrast levels, dichoptic masking was more effective in elevating contrast thresholds than monocular masking, and approached Weber’s Law behavior. In the second experiment, spatial frequency tuning functions were obtained for test gratings at five spatial frequencies, by measuring threshold elevation as a function of the spatial frequency of constant-contrast masking gratings. At 1.0, 4.0, and 16.0 cpd, the tuning functions peaked at the test frequencies. The dichoptic tuning functions had a bandwidth of about 1 octave between half-maximum points, narrower than the ± 1 octave bandwidths of the monocular tuning functions. At 0.125 and 0.25 cpd, the tuning functions were broader and exhibited a shift in peak masking to frequencies above the test frequencies.

© 1979 Optical Society of America

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription