Abstract

The arctic mirage is an atmospheric refraction phenomenon caused by a temperature inversion in the lower atmosphere. It is classified into three basic types, two of which (hillingar and hafgerdingar effects) occur fairly frequently. The third is the Novaya Zemlya effect, reported by polar explorers on several occasions as an anomalous sunrise during the polar winter, when the position of the sun was below the horizon. The Novaya Zemlya effect consists of the trapping of light rays beneath a thermocline of large horizontal extent. Within the thermocline layers, the coefficient of refraction must exceed 1, while above and below it the coefficient must be less than 1. Then certain upward rays repeatedly bounce back from the thermocline and are transmitted for long distances around the earth’s curvature. The anomalous sunrise is a special case of this generalized definition. The properties of the Novaya Zemlya effect, analyzed using a laterally uniform stratified-atmosphere model, agree with those reported by polar expeditions. A narrow strip or window appears near the horizon, with or without an image of the sun in the window. An observation sketched by Liljequist in Antarctica is reconstructed to demonstrate the model’s accuracy.

© 1979 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. deVeer, The Three Voyages of William Barents to the Arctic Regions (1594,).1595 and 1596), 2nd ed.(Hakluyt Society, London, 1876).
  2. S. W. Visser, “The Novaya-Zemlya Phenomenon,” K. Ned. Akad. Wet. Versl. Gewone Vergad, Afd. Natuurkd. 59, 375–385 (1956).
  3. E. Shackleton, South–The Story of Shackleton’s Last Expedition 1914–1917, (MacMillan, New York, 1920).
  4. A. Wegener, “Elementare Theorie der atmospharischen Spiege-lungen,” Ann. Phys. (Leipzig) 57, 203–230 (1918).
  5. J. M. Pernter and F. M. Exner, MeteorologischeOptik, 2nd ed. (Braumuller, Vienna, 1922).
  6. G. H. Liljequist, “Refraction Phenomena in the Polar Atmosphere,” in Scientific Results, Norwegian-British-Swedish Antarctic Expedition, 1949–52, Vol. 2, Part 2, (Oslo University, Oslo, 1964).
  7. H. L. Sawatzky and W. H. Lehn, “The Arctic Mirage and the Early North Atlantic,” Science,  192, 1300–1305 (1976).
    [CrossRef] [PubMed]
  8. W. H. Lehn and H. L. Sawatzky, “Image Transmission under Arctic Mirage Conditions,” Z. Polarforschung,  45, 120–128 (1975).
  9. W. H. Lehn, H. L. Sawatzky, and et al., “Lore, Logic and the Arctic Mirage,” Scand. Review,  66, 36–41 (1978).
  10. W. H. Lehn and M. B. El-Arini, “Computer-graphics analysis of atmospheric refraction”, Appl. Opt.,  17, 3146–3151 (1978).
    [CrossRef] [PubMed]

1978 (2)

W. H. Lehn, H. L. Sawatzky, and et al., “Lore, Logic and the Arctic Mirage,” Scand. Review,  66, 36–41 (1978).

W. H. Lehn and M. B. El-Arini, “Computer-graphics analysis of atmospheric refraction”, Appl. Opt.,  17, 3146–3151 (1978).
[CrossRef] [PubMed]

1976 (1)

H. L. Sawatzky and W. H. Lehn, “The Arctic Mirage and the Early North Atlantic,” Science,  192, 1300–1305 (1976).
[CrossRef] [PubMed]

1975 (1)

W. H. Lehn and H. L. Sawatzky, “Image Transmission under Arctic Mirage Conditions,” Z. Polarforschung,  45, 120–128 (1975).

1956 (1)

S. W. Visser, “The Novaya-Zemlya Phenomenon,” K. Ned. Akad. Wet. Versl. Gewone Vergad, Afd. Natuurkd. 59, 375–385 (1956).

1918 (1)

A. Wegener, “Elementare Theorie der atmospharischen Spiege-lungen,” Ann. Phys. (Leipzig) 57, 203–230 (1918).

deVeer, G.

G. deVeer, The Three Voyages of William Barents to the Arctic Regions (1594,).1595 and 1596), 2nd ed.(Hakluyt Society, London, 1876).

El-Arini, M. B.

Exner, F. M.

J. M. Pernter and F. M. Exner, MeteorologischeOptik, 2nd ed. (Braumuller, Vienna, 1922).

Lehn, W. H.

W. H. Lehn, H. L. Sawatzky, and et al., “Lore, Logic and the Arctic Mirage,” Scand. Review,  66, 36–41 (1978).

W. H. Lehn and M. B. El-Arini, “Computer-graphics analysis of atmospheric refraction”, Appl. Opt.,  17, 3146–3151 (1978).
[CrossRef] [PubMed]

H. L. Sawatzky and W. H. Lehn, “The Arctic Mirage and the Early North Atlantic,” Science,  192, 1300–1305 (1976).
[CrossRef] [PubMed]

W. H. Lehn and H. L. Sawatzky, “Image Transmission under Arctic Mirage Conditions,” Z. Polarforschung,  45, 120–128 (1975).

Liljequist, G. H.

G. H. Liljequist, “Refraction Phenomena in the Polar Atmosphere,” in Scientific Results, Norwegian-British-Swedish Antarctic Expedition, 1949–52, Vol. 2, Part 2, (Oslo University, Oslo, 1964).

Pernter, J. M.

J. M. Pernter and F. M. Exner, MeteorologischeOptik, 2nd ed. (Braumuller, Vienna, 1922).

Sawatzky, H. L.

W. H. Lehn, H. L. Sawatzky, and et al., “Lore, Logic and the Arctic Mirage,” Scand. Review,  66, 36–41 (1978).

H. L. Sawatzky and W. H. Lehn, “The Arctic Mirage and the Early North Atlantic,” Science,  192, 1300–1305 (1976).
[CrossRef] [PubMed]

W. H. Lehn and H. L. Sawatzky, “Image Transmission under Arctic Mirage Conditions,” Z. Polarforschung,  45, 120–128 (1975).

Shackleton, E.

E. Shackleton, South–The Story of Shackleton’s Last Expedition 1914–1917, (MacMillan, New York, 1920).

Visser, S. W.

S. W. Visser, “The Novaya-Zemlya Phenomenon,” K. Ned. Akad. Wet. Versl. Gewone Vergad, Afd. Natuurkd. 59, 375–385 (1956).

Wegener, A.

A. Wegener, “Elementare Theorie der atmospharischen Spiege-lungen,” Ann. Phys. (Leipzig) 57, 203–230 (1918).

Ann. Phys. (Leipzig) (1)

A. Wegener, “Elementare Theorie der atmospharischen Spiege-lungen,” Ann. Phys. (Leipzig) 57, 203–230 (1918).

Appl. Opt. (1)

K. Ned. Akad. Wet. Versl. Gewone Vergad, Afd. Natuurkd. (1)

S. W. Visser, “The Novaya-Zemlya Phenomenon,” K. Ned. Akad. Wet. Versl. Gewone Vergad, Afd. Natuurkd. 59, 375–385 (1956).

Scand. Review (1)

W. H. Lehn, H. L. Sawatzky, and et al., “Lore, Logic and the Arctic Mirage,” Scand. Review,  66, 36–41 (1978).

Science (1)

H. L. Sawatzky and W. H. Lehn, “The Arctic Mirage and the Early North Atlantic,” Science,  192, 1300–1305 (1976).
[CrossRef] [PubMed]

Z. Polarforschung (1)

W. H. Lehn and H. L. Sawatzky, “Image Transmission under Arctic Mirage Conditions,” Z. Polarforschung,  45, 120–128 (1975).

Other (4)

G. deVeer, The Three Voyages of William Barents to the Arctic Regions (1594,).1595 and 1596), 2nd ed.(Hakluyt Society, London, 1876).

E. Shackleton, South–The Story of Shackleton’s Last Expedition 1914–1917, (MacMillan, New York, 1920).

J. M. Pernter and F. M. Exner, MeteorologischeOptik, 2nd ed. (Braumuller, Vienna, 1922).

G. H. Liljequist, “Refraction Phenomena in the Polar Atmosphere,” in Scientific Results, Norwegian-British-Swedish Antarctic Expedition, 1949–52, Vol. 2, Part 2, (Oslo University, Oslo, 1964).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

FIG. 1
FIG. 1

Geometry of Barentz’s observation. The ray to the sun’s center is tangent to the earth at B, 540 km from the observer. From B to A, the atmosphere refracts rays around the earth’s curvature.

FIG. 2
FIG. 2

Typical ray paths for the hillingar effect.

FIG. 3
FIG. 3

Typical ray paths for the hafgerdingar effect.

FIG. 4
FIG. 4

Typical ray paths for the Novaya Zemlya effect.

FIG. 5
FIG. 5

Liljequist’s sketch of the Novaya Zemlya effect, July 1, 1951 (Ref. 6). “The sun was seen like a red and partly bipartite strip, situated wholly within a relatively dark horizontal strip of the same breadth and with its lower rim about 3′ above the ice-shelf horizon.”

FIG. 6
FIG. 6

Temperature profile required to reproduce Liljequist’s observation.

FIG. 7
FIG. 7

Computer drawing of ray paths generated by the temperature profile of Fig. 6. The sequence of initial ray angles, starting with the uppermost ray, is 0.06°, 0.055°, 0.05°, 0.04°, 0.03°, 0.02°, 0.0°, −0.02°, −0.03°, −0.04°, −0.05°, −0.055°, −0.08°, and −0.10°.

FIG. 8
FIG. 8

Mapping of ray angle at 390 km vs ray angle at observer’s eye, for the temperature profile of Fig. 6.

FIG. 9
FIG. 9

Configuration producing the best reconstruction of Liljequist’s observation.

FIG. 10
FIG. 10

Calculated appearance of sun (cf. Fig. 5.)

Tables (1)

Tables Icon

TABLE I Typical values for k based on different temperatures and temperature gradients. The pressure is taken as the normal earth-surface value: 1.013 × 105 nm−2.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

k = radius of the earth radius of curvature of light ray .
n = 1 + ρ ,
ρ = β ( P / T ) ,
p = p 0 e g β 0 z [ d z / T ( z ) ] ,
1 r = 1 + ρ d ρ d z .
k = R β p ( 1 + ρ ) T 2 ( d T d z + g β ) .