Abstract

Laser induced impedance changes in a hollow cathode discharge containing sputtered uranium atoms were used for standard spectroscopic measurements, the determination of oscillator strengths, the measurement of the electron temperature of the discharge, isotope ratio analysis, and obtaining information about the sputtering process. Concentrations of uranium atoms as small as 108/cc could be detected.

© 1979 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. B. Green, R. A. Keller, G. G. Luther, P. K. Schenck, and J. C. Travis, “Galvanic Detection of Optical Absorptions in a Gas Discharge,” Appl. Phys. Lett. 29, 727 (1976).
    [Crossref]
  2. D. S. King, P. K. Schenck, K. C. Smyth, and J. C. Travis, “Direct Calibration of Laser Wavelength and Bandwidth Using the Optogalvanic Effect in Hollow Cathode Lamps,” Appl. Opt. 16, 2617 (1977).
    [Crossref] [PubMed]
  3. W. B. Bridges, “Characteristics of an Opto-Galvanic Effect in Cesium and Other Gas Discharge Plasmas,” J. Opt. Soc. Am. 68, 352 (1978).
    [Crossref]
  4. E. F. Zalewski, R. A. Keller, and R. Engleman, “Laser Induced Impedance Changes in a Neon Hollow Cathode Discharge. A Mechanistic Study,” J. Chem.Phys. 70, 1015 (1979).
    [Crossref]
  5. A. C. G. Mitchell and M. W. Zemansky, Resonance Radiation and Excited Atoms (Cambridge, London, 1934).
  6. P. K. Schenck and K. C. Smyth, “Opto-Galvanic Spectroscopy of Atomic Neutrals and Ions in Discharges,” J. Opt. Soc. Am. 68, 626 (1978).
  7. C. H. Corliss, “Line Strengths and Lifetimes of Levels in Neutral Uranium,” J. Res. Natl. Bur. Stand. 80A, 1(1976).
    [Crossref]
  8. T. M. Bieniewski, “Absolute Oscillator Strengths for Neutral Atomic Uranium,” J. Opt. Soc. Am. 68, 1173 (1978).
    [Crossref]
  9. B. E. Warner, University of Colorado and National Bureau of Standards (Boulder), (private communication).
  10. J. R. McNeil, “New Sputtered Metal Vapor Laser Systems,” Dissertation Abstr. 38, 6013 (1977).
  11. T. M. Bieniewski, Los Alamos Scientific Laboratory (private communication).
  12. S. Gerstenkorn, P. Luc, CI. Bauche-Arnoult, and D. Merle, “Structure Hyperfine du Niveau Fondamental, Moments Dipolaire et Quadrupolaire de L’Isotope 235 de L’Uranium,” J. de Phys. 34, 805 (1973).
    [Crossref]
  13. H.-D. V. Böhm, W. Michaelis, and C. Weitkamp, “Hyperfine Structure and Isotope Shift Measurements on 235U and Laser Separation of Uranium Isotopes by Two-Step Photoionization,” Opt. Commun. 26, 177 (1978).
    [Crossref]
  14. J. M. Gagné, B. Mongeau, B. Leblanc, J. P. Saint-Dizier, P. Pianarosa, and L. Bertrand, “Production de Vapeur D’Uranium par Pulvérisation Cathodique dans une Cathode Creuse: Efficacités Relatives des Gaz Ne, Ar, Kr et Concentration á L’Etat ⁵L60,” Appl. Opt. 17, 2507 (1978).
    [Crossref]

1979 (1)

E. F. Zalewski, R. A. Keller, and R. Engleman, “Laser Induced Impedance Changes in a Neon Hollow Cathode Discharge. A Mechanistic Study,” J. Chem.Phys. 70, 1015 (1979).
[Crossref]

1978 (5)

1977 (2)

1976 (2)

R. B. Green, R. A. Keller, G. G. Luther, P. K. Schenck, and J. C. Travis, “Galvanic Detection of Optical Absorptions in a Gas Discharge,” Appl. Phys. Lett. 29, 727 (1976).
[Crossref]

C. H. Corliss, “Line Strengths and Lifetimes of Levels in Neutral Uranium,” J. Res. Natl. Bur. Stand. 80A, 1(1976).
[Crossref]

1973 (1)

S. Gerstenkorn, P. Luc, CI. Bauche-Arnoult, and D. Merle, “Structure Hyperfine du Niveau Fondamental, Moments Dipolaire et Quadrupolaire de L’Isotope 235 de L’Uranium,” J. de Phys. 34, 805 (1973).
[Crossref]

Bauche-Arnoult, CI.

S. Gerstenkorn, P. Luc, CI. Bauche-Arnoult, and D. Merle, “Structure Hyperfine du Niveau Fondamental, Moments Dipolaire et Quadrupolaire de L’Isotope 235 de L’Uranium,” J. de Phys. 34, 805 (1973).
[Crossref]

Bertrand, L.

Bieniewski, T. M.

Böhm, H.-D. V.

H.-D. V. Böhm, W. Michaelis, and C. Weitkamp, “Hyperfine Structure and Isotope Shift Measurements on 235U and Laser Separation of Uranium Isotopes by Two-Step Photoionization,” Opt. Commun. 26, 177 (1978).
[Crossref]

Bridges, W. B.

Corliss, C. H.

C. H. Corliss, “Line Strengths and Lifetimes of Levels in Neutral Uranium,” J. Res. Natl. Bur. Stand. 80A, 1(1976).
[Crossref]

Engleman, R.

E. F. Zalewski, R. A. Keller, and R. Engleman, “Laser Induced Impedance Changes in a Neon Hollow Cathode Discharge. A Mechanistic Study,” J. Chem.Phys. 70, 1015 (1979).
[Crossref]

Gagné, J. M.

Gerstenkorn, S.

S. Gerstenkorn, P. Luc, CI. Bauche-Arnoult, and D. Merle, “Structure Hyperfine du Niveau Fondamental, Moments Dipolaire et Quadrupolaire de L’Isotope 235 de L’Uranium,” J. de Phys. 34, 805 (1973).
[Crossref]

Green, R. B.

R. B. Green, R. A. Keller, G. G. Luther, P. K. Schenck, and J. C. Travis, “Galvanic Detection of Optical Absorptions in a Gas Discharge,” Appl. Phys. Lett. 29, 727 (1976).
[Crossref]

Keller, R. A.

E. F. Zalewski, R. A. Keller, and R. Engleman, “Laser Induced Impedance Changes in a Neon Hollow Cathode Discharge. A Mechanistic Study,” J. Chem.Phys. 70, 1015 (1979).
[Crossref]

R. B. Green, R. A. Keller, G. G. Luther, P. K. Schenck, and J. C. Travis, “Galvanic Detection of Optical Absorptions in a Gas Discharge,” Appl. Phys. Lett. 29, 727 (1976).
[Crossref]

King, D. S.

Leblanc, B.

Luc, P.

S. Gerstenkorn, P. Luc, CI. Bauche-Arnoult, and D. Merle, “Structure Hyperfine du Niveau Fondamental, Moments Dipolaire et Quadrupolaire de L’Isotope 235 de L’Uranium,” J. de Phys. 34, 805 (1973).
[Crossref]

Luther, G. G.

R. B. Green, R. A. Keller, G. G. Luther, P. K. Schenck, and J. C. Travis, “Galvanic Detection of Optical Absorptions in a Gas Discharge,” Appl. Phys. Lett. 29, 727 (1976).
[Crossref]

McNeil, J. R.

J. R. McNeil, “New Sputtered Metal Vapor Laser Systems,” Dissertation Abstr. 38, 6013 (1977).

Merle, D.

S. Gerstenkorn, P. Luc, CI. Bauche-Arnoult, and D. Merle, “Structure Hyperfine du Niveau Fondamental, Moments Dipolaire et Quadrupolaire de L’Isotope 235 de L’Uranium,” J. de Phys. 34, 805 (1973).
[Crossref]

Michaelis, W.

H.-D. V. Böhm, W. Michaelis, and C. Weitkamp, “Hyperfine Structure and Isotope Shift Measurements on 235U and Laser Separation of Uranium Isotopes by Two-Step Photoionization,” Opt. Commun. 26, 177 (1978).
[Crossref]

Mitchell, A. C. G.

A. C. G. Mitchell and M. W. Zemansky, Resonance Radiation and Excited Atoms (Cambridge, London, 1934).

Mongeau, B.

Pianarosa, P.

Saint-Dizier, J. P.

Schenck, P. K.

P. K. Schenck and K. C. Smyth, “Opto-Galvanic Spectroscopy of Atomic Neutrals and Ions in Discharges,” J. Opt. Soc. Am. 68, 626 (1978).

D. S. King, P. K. Schenck, K. C. Smyth, and J. C. Travis, “Direct Calibration of Laser Wavelength and Bandwidth Using the Optogalvanic Effect in Hollow Cathode Lamps,” Appl. Opt. 16, 2617 (1977).
[Crossref] [PubMed]

R. B. Green, R. A. Keller, G. G. Luther, P. K. Schenck, and J. C. Travis, “Galvanic Detection of Optical Absorptions in a Gas Discharge,” Appl. Phys. Lett. 29, 727 (1976).
[Crossref]

Smyth, K. C.

Travis, J. C.

D. S. King, P. K. Schenck, K. C. Smyth, and J. C. Travis, “Direct Calibration of Laser Wavelength and Bandwidth Using the Optogalvanic Effect in Hollow Cathode Lamps,” Appl. Opt. 16, 2617 (1977).
[Crossref] [PubMed]

R. B. Green, R. A. Keller, G. G. Luther, P. K. Schenck, and J. C. Travis, “Galvanic Detection of Optical Absorptions in a Gas Discharge,” Appl. Phys. Lett. 29, 727 (1976).
[Crossref]

Warner, B. E.

B. E. Warner, University of Colorado and National Bureau of Standards (Boulder), (private communication).

Weitkamp, C.

H.-D. V. Böhm, W. Michaelis, and C. Weitkamp, “Hyperfine Structure and Isotope Shift Measurements on 235U and Laser Separation of Uranium Isotopes by Two-Step Photoionization,” Opt. Commun. 26, 177 (1978).
[Crossref]

Zalewski, E. F.

E. F. Zalewski, R. A. Keller, and R. Engleman, “Laser Induced Impedance Changes in a Neon Hollow Cathode Discharge. A Mechanistic Study,” J. Chem.Phys. 70, 1015 (1979).
[Crossref]

Zemansky, M. W.

A. C. G. Mitchell and M. W. Zemansky, Resonance Radiation and Excited Atoms (Cambridge, London, 1934).

Appl. Opt. (2)

Appl. Phys. Lett. (1)

R. B. Green, R. A. Keller, G. G. Luther, P. K. Schenck, and J. C. Travis, “Galvanic Detection of Optical Absorptions in a Gas Discharge,” Appl. Phys. Lett. 29, 727 (1976).
[Crossref]

Dissertation Abstr. (1)

J. R. McNeil, “New Sputtered Metal Vapor Laser Systems,” Dissertation Abstr. 38, 6013 (1977).

J. Chem.Phys. (1)

E. F. Zalewski, R. A. Keller, and R. Engleman, “Laser Induced Impedance Changes in a Neon Hollow Cathode Discharge. A Mechanistic Study,” J. Chem.Phys. 70, 1015 (1979).
[Crossref]

J. de Phys. (1)

S. Gerstenkorn, P. Luc, CI. Bauche-Arnoult, and D. Merle, “Structure Hyperfine du Niveau Fondamental, Moments Dipolaire et Quadrupolaire de L’Isotope 235 de L’Uranium,” J. de Phys. 34, 805 (1973).
[Crossref]

J. Opt. Soc. Am. (3)

J. Res. Natl. Bur. Stand. (1)

C. H. Corliss, “Line Strengths and Lifetimes of Levels in Neutral Uranium,” J. Res. Natl. Bur. Stand. 80A, 1(1976).
[Crossref]

Opt. Commun. (1)

H.-D. V. Böhm, W. Michaelis, and C. Weitkamp, “Hyperfine Structure and Isotope Shift Measurements on 235U and Laser Separation of Uranium Isotopes by Two-Step Photoionization,” Opt. Commun. 26, 177 (1978).
[Crossref]

Other (3)

T. M. Bieniewski, Los Alamos Scientific Laboratory (private communication).

B. E. Warner, University of Colorado and National Bureau of Standards (Boulder), (private communication).

A. C. G. Mitchell and M. W. Zemansky, Resonance Radiation and Excited Atoms (Cambridge, London, 1934).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

FIG. 1
FIG. 1

Laser-induced voltage change in uranium vapor at 5915 Å. Laser power 375 mW, tube current 25 mA. Lower-laser off, upper-laser on.

FIG. 2
FIG. 2

Laser-induced impedance change divided by the probability of light absorption vs the energy of the initial state. Laser power less than 150 mW, tube current 25 mA. Data in Table I.

FIG. 3
FIG. 3

Isotope splitting and hyperfine structure of the 235U transition at 5915 Å. Laser power ∼50 mW, tube current −20 mA. The hyperfine components are denoted by lower case letters.12,13 Gain for 235U is 100X gain for 238U.

FIG. 4
FIG. 4

Laser induced impedance change vs the discharge current for the 5915-Å transition in uranium. Laser power 150 mW. Insert: expanded scale for low-discharge current.

Tables (2)

Tables Icon

TABLE I Laser-induced impedance changes for UI

Tables Icon

TABLE II Laser induced impedance changes for UII.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Δ Z A B / I A B λ A B · f A B · [ A ] .
[ A ] g A e E A / k T .
Δ Z A B / I A B g A · λ A B · f A B e E A / k T .