Abstract

Temperature-dependent Sellmeier equations are useful for determining optical-design parameters of nonlinear optical devices. These coefficients as a function of temperature are calculated for three chalcopyrite crystals: ZnGeP2, CdGeP2, and CuGaS2. Coherence lengths for second harmonic generation as well as its temperature derivative are also presented for these crystals.

© 1979 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. L. Shay, B. Tell, and H. M. Kasper, Appl. Phys. Lett. 19, 366 (1971);J. L. Shay, L. M. Schiavone, E. Buehler, and J. H. Wernick, J. Appl. Phys. 43, 2805 (1972).
    [CrossRef]
  2. G. W. Iseler, H. Kildal, and N. Menyuk, Proceedings of the Third International Conference on Ternary Semiconductors, 14–15 April 1977, Edinburgh, [available as Institute of Physics (London) Conference series No. 35],p. 73.
  3. J. L. Shay and J. H. Wernick, Ternary Chalcopyrite Semiconductors: Growth, Electronic Properties and Applications (Pergamon, New York, 1975).
  4. G. C. Bhar, Appl. Opt. 15, 305 (1976).
    [CrossRef]
  5. R. L. Byer and R. L. Herbst: Parametric Oscillation and Mixing, in Nonlinear Infrared Generation, edited by Y. R. Shen (Springer-Verlag, New York, 1977).
  6. M. V. Hobden and J. Warner, Phys. Lett. 22, 243 (1966).
    [CrossRef]
  7. N. P. Barnes and M. S. Piltch, J. Opt Soc. Am. 67, 628 (1977).
    [CrossRef]
  8. O. N. Stavroudis and L. E. Sutton, J. Opt. Soc. Am. 51, 368 (1961);ibid.,  51, 901 (1961).
    [CrossRef]
  9. D. W. Marquardt, J. Soc. Indust. Appl. Math. 11, 431 (1963).
    [CrossRef]
  10. G. C. Bhar and R. C. Smith, Phys. Status Solidi A 13, 157 (1972).
    [CrossRef]
  11. G. C. Bhar, Phys. Rev. B (to be published).
  12. G. D. Boyd, E. Buehler, and F. G. Storz, Appl. Phys. Lett. 18, 301 (1971);G. D. Boyd, H. M. Kasper, and J. H. McFee, IEEE J. Quantum Electron. QE-7, 563 (1971);G. D. Boyd, E. Buehler, F. G. Storz, and J. H. Wernick; IEEE J. Quantum Electron. QE-8, 419 (1972).
    [CrossRef]
  13. Y. Tsay, B. Bendow, and S. S. Mitra, Phys. Rev. B 8, 2688 (1973).
    [CrossRef]
  14. J. E. Harvey and W. E. Wolfe, J. Opt. Soc. Am. 65, 1267 (1975).
    [CrossRef]
  15. P. Y. Yu, W. J. Anderson, and Y. S. Park, Solid State Commun. 13, 1883 (1973).
    [CrossRef]
  16. J. L. Shay, B. Tell, H. M. Kasper, and L. M. Schiavone, Phys. Rev. B 7, 4485 (1973).
    [CrossRef]
  17. N. Bloembergen and A. J. Sievers, Appl. Phys. Lett. 17, 483 (1970).
    [CrossRef]
  18. D. B. Anderson, J. T. Boyd, and J. D. McMullen, Proceedings of the International Symposium on Submillimeter Waves (Polytechnic, Brooklyn, 1970).

1977 (1)

N. P. Barnes and M. S. Piltch, J. Opt Soc. Am. 67, 628 (1977).
[CrossRef]

1976 (1)

1975 (1)

1973 (3)

Y. Tsay, B. Bendow, and S. S. Mitra, Phys. Rev. B 8, 2688 (1973).
[CrossRef]

P. Y. Yu, W. J. Anderson, and Y. S. Park, Solid State Commun. 13, 1883 (1973).
[CrossRef]

J. L. Shay, B. Tell, H. M. Kasper, and L. M. Schiavone, Phys. Rev. B 7, 4485 (1973).
[CrossRef]

1972 (1)

G. C. Bhar and R. C. Smith, Phys. Status Solidi A 13, 157 (1972).
[CrossRef]

1971 (2)

G. D. Boyd, E. Buehler, and F. G. Storz, Appl. Phys. Lett. 18, 301 (1971);G. D. Boyd, H. M. Kasper, and J. H. McFee, IEEE J. Quantum Electron. QE-7, 563 (1971);G. D. Boyd, E. Buehler, F. G. Storz, and J. H. Wernick; IEEE J. Quantum Electron. QE-8, 419 (1972).
[CrossRef]

J. L. Shay, B. Tell, and H. M. Kasper, Appl. Phys. Lett. 19, 366 (1971);J. L. Shay, L. M. Schiavone, E. Buehler, and J. H. Wernick, J. Appl. Phys. 43, 2805 (1972).
[CrossRef]

1970 (1)

N. Bloembergen and A. J. Sievers, Appl. Phys. Lett. 17, 483 (1970).
[CrossRef]

1966 (1)

M. V. Hobden and J. Warner, Phys. Lett. 22, 243 (1966).
[CrossRef]

1963 (1)

D. W. Marquardt, J. Soc. Indust. Appl. Math. 11, 431 (1963).
[CrossRef]

1961 (1)

Anderson, D. B.

D. B. Anderson, J. T. Boyd, and J. D. McMullen, Proceedings of the International Symposium on Submillimeter Waves (Polytechnic, Brooklyn, 1970).

Anderson, W. J.

P. Y. Yu, W. J. Anderson, and Y. S. Park, Solid State Commun. 13, 1883 (1973).
[CrossRef]

Barnes, N. P.

N. P. Barnes and M. S. Piltch, J. Opt Soc. Am. 67, 628 (1977).
[CrossRef]

Bendow, B.

Y. Tsay, B. Bendow, and S. S. Mitra, Phys. Rev. B 8, 2688 (1973).
[CrossRef]

Bhar, G. C.

G. C. Bhar, Appl. Opt. 15, 305 (1976).
[CrossRef]

G. C. Bhar and R. C. Smith, Phys. Status Solidi A 13, 157 (1972).
[CrossRef]

G. C. Bhar, Phys. Rev. B (to be published).

Bloembergen, N.

N. Bloembergen and A. J. Sievers, Appl. Phys. Lett. 17, 483 (1970).
[CrossRef]

Boyd, G. D.

G. D. Boyd, E. Buehler, and F. G. Storz, Appl. Phys. Lett. 18, 301 (1971);G. D. Boyd, H. M. Kasper, and J. H. McFee, IEEE J. Quantum Electron. QE-7, 563 (1971);G. D. Boyd, E. Buehler, F. G. Storz, and J. H. Wernick; IEEE J. Quantum Electron. QE-8, 419 (1972).
[CrossRef]

Boyd, J. T.

D. B. Anderson, J. T. Boyd, and J. D. McMullen, Proceedings of the International Symposium on Submillimeter Waves (Polytechnic, Brooklyn, 1970).

Buehler, E.

G. D. Boyd, E. Buehler, and F. G. Storz, Appl. Phys. Lett. 18, 301 (1971);G. D. Boyd, H. M. Kasper, and J. H. McFee, IEEE J. Quantum Electron. QE-7, 563 (1971);G. D. Boyd, E. Buehler, F. G. Storz, and J. H. Wernick; IEEE J. Quantum Electron. QE-8, 419 (1972).
[CrossRef]

Byer, R. L.

R. L. Byer and R. L. Herbst: Parametric Oscillation and Mixing, in Nonlinear Infrared Generation, edited by Y. R. Shen (Springer-Verlag, New York, 1977).

Harvey, J. E.

Herbst, R. L.

R. L. Byer and R. L. Herbst: Parametric Oscillation and Mixing, in Nonlinear Infrared Generation, edited by Y. R. Shen (Springer-Verlag, New York, 1977).

Hobden, M. V.

M. V. Hobden and J. Warner, Phys. Lett. 22, 243 (1966).
[CrossRef]

Iseler, G. W.

G. W. Iseler, H. Kildal, and N. Menyuk, Proceedings of the Third International Conference on Ternary Semiconductors, 14–15 April 1977, Edinburgh, [available as Institute of Physics (London) Conference series No. 35],p. 73.

Kasper, H. M.

J. L. Shay, B. Tell, H. M. Kasper, and L. M. Schiavone, Phys. Rev. B 7, 4485 (1973).
[CrossRef]

J. L. Shay, B. Tell, and H. M. Kasper, Appl. Phys. Lett. 19, 366 (1971);J. L. Shay, L. M. Schiavone, E. Buehler, and J. H. Wernick, J. Appl. Phys. 43, 2805 (1972).
[CrossRef]

Kildal, H.

G. W. Iseler, H. Kildal, and N. Menyuk, Proceedings of the Third International Conference on Ternary Semiconductors, 14–15 April 1977, Edinburgh, [available as Institute of Physics (London) Conference series No. 35],p. 73.

Marquardt, D. W.

D. W. Marquardt, J. Soc. Indust. Appl. Math. 11, 431 (1963).
[CrossRef]

McMullen, J. D.

D. B. Anderson, J. T. Boyd, and J. D. McMullen, Proceedings of the International Symposium on Submillimeter Waves (Polytechnic, Brooklyn, 1970).

Menyuk, N.

G. W. Iseler, H. Kildal, and N. Menyuk, Proceedings of the Third International Conference on Ternary Semiconductors, 14–15 April 1977, Edinburgh, [available as Institute of Physics (London) Conference series No. 35],p. 73.

Mitra, S. S.

Y. Tsay, B. Bendow, and S. S. Mitra, Phys. Rev. B 8, 2688 (1973).
[CrossRef]

Park, Y. S.

P. Y. Yu, W. J. Anderson, and Y. S. Park, Solid State Commun. 13, 1883 (1973).
[CrossRef]

Piltch, M. S.

N. P. Barnes and M. S. Piltch, J. Opt Soc. Am. 67, 628 (1977).
[CrossRef]

Schiavone, L. M.

J. L. Shay, B. Tell, H. M. Kasper, and L. M. Schiavone, Phys. Rev. B 7, 4485 (1973).
[CrossRef]

Shay, J. L.

J. L. Shay, B. Tell, H. M. Kasper, and L. M. Schiavone, Phys. Rev. B 7, 4485 (1973).
[CrossRef]

J. L. Shay, B. Tell, and H. M. Kasper, Appl. Phys. Lett. 19, 366 (1971);J. L. Shay, L. M. Schiavone, E. Buehler, and J. H. Wernick, J. Appl. Phys. 43, 2805 (1972).
[CrossRef]

J. L. Shay and J. H. Wernick, Ternary Chalcopyrite Semiconductors: Growth, Electronic Properties and Applications (Pergamon, New York, 1975).

Sievers, A. J.

N. Bloembergen and A. J. Sievers, Appl. Phys. Lett. 17, 483 (1970).
[CrossRef]

Smith, R. C.

G. C. Bhar and R. C. Smith, Phys. Status Solidi A 13, 157 (1972).
[CrossRef]

Stavroudis, O. N.

Storz, F. G.

G. D. Boyd, E. Buehler, and F. G. Storz, Appl. Phys. Lett. 18, 301 (1971);G. D. Boyd, H. M. Kasper, and J. H. McFee, IEEE J. Quantum Electron. QE-7, 563 (1971);G. D. Boyd, E. Buehler, F. G. Storz, and J. H. Wernick; IEEE J. Quantum Electron. QE-8, 419 (1972).
[CrossRef]

Sutton, L. E.

Tell, B.

J. L. Shay, B. Tell, H. M. Kasper, and L. M. Schiavone, Phys. Rev. B 7, 4485 (1973).
[CrossRef]

J. L. Shay, B. Tell, and H. M. Kasper, Appl. Phys. Lett. 19, 366 (1971);J. L. Shay, L. M. Schiavone, E. Buehler, and J. H. Wernick, J. Appl. Phys. 43, 2805 (1972).
[CrossRef]

Tsay, Y.

Y. Tsay, B. Bendow, and S. S. Mitra, Phys. Rev. B 8, 2688 (1973).
[CrossRef]

Warner, J.

M. V. Hobden and J. Warner, Phys. Lett. 22, 243 (1966).
[CrossRef]

Wernick, J. H.

J. L. Shay and J. H. Wernick, Ternary Chalcopyrite Semiconductors: Growth, Electronic Properties and Applications (Pergamon, New York, 1975).

Wolfe, W. E.

Yu, P. Y.

P. Y. Yu, W. J. Anderson, and Y. S. Park, Solid State Commun. 13, 1883 (1973).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (3)

J. L. Shay, B. Tell, and H. M. Kasper, Appl. Phys. Lett. 19, 366 (1971);J. L. Shay, L. M. Schiavone, E. Buehler, and J. H. Wernick, J. Appl. Phys. 43, 2805 (1972).
[CrossRef]

G. D. Boyd, E. Buehler, and F. G. Storz, Appl. Phys. Lett. 18, 301 (1971);G. D. Boyd, H. M. Kasper, and J. H. McFee, IEEE J. Quantum Electron. QE-7, 563 (1971);G. D. Boyd, E. Buehler, F. G. Storz, and J. H. Wernick; IEEE J. Quantum Electron. QE-8, 419 (1972).
[CrossRef]

N. Bloembergen and A. J. Sievers, Appl. Phys. Lett. 17, 483 (1970).
[CrossRef]

J. Opt Soc. Am. (1)

N. P. Barnes and M. S. Piltch, J. Opt Soc. Am. 67, 628 (1977).
[CrossRef]

J. Opt. Soc. Am. (2)

J. Soc. Indust. Appl. Math. (1)

D. W. Marquardt, J. Soc. Indust. Appl. Math. 11, 431 (1963).
[CrossRef]

Phys. Lett. (1)

M. V. Hobden and J. Warner, Phys. Lett. 22, 243 (1966).
[CrossRef]

Phys. Rev. B (2)

J. L. Shay, B. Tell, H. M. Kasper, and L. M. Schiavone, Phys. Rev. B 7, 4485 (1973).
[CrossRef]

Y. Tsay, B. Bendow, and S. S. Mitra, Phys. Rev. B 8, 2688 (1973).
[CrossRef]

Phys. Status Solidi A (1)

G. C. Bhar and R. C. Smith, Phys. Status Solidi A 13, 157 (1972).
[CrossRef]

Solid State Commun. (1)

P. Y. Yu, W. J. Anderson, and Y. S. Park, Solid State Commun. 13, 1883 (1973).
[CrossRef]

Other (5)

D. B. Anderson, J. T. Boyd, and J. D. McMullen, Proceedings of the International Symposium on Submillimeter Waves (Polytechnic, Brooklyn, 1970).

G. C. Bhar, Phys. Rev. B (to be published).

G. W. Iseler, H. Kildal, and N. Menyuk, Proceedings of the Third International Conference on Ternary Semiconductors, 14–15 April 1977, Edinburgh, [available as Institute of Physics (London) Conference series No. 35],p. 73.

J. L. Shay and J. H. Wernick, Ternary Chalcopyrite Semiconductors: Growth, Electronic Properties and Applications (Pergamon, New York, 1975).

R. L. Byer and R. L. Herbst: Parametric Oscillation and Mixing, in Nonlinear Infrared Generation, edited by Y. R. Shen (Springer-Verlag, New York, 1977).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

FIG. 1
FIG. 1

Typical plot of the temperature-dependent Sellmeier coefficients (A, B, C, and D) for ZnGeP2 ordinary refractive index.

FIG. 2
FIG. 2

Coherence length for second harmonic generation in CuGaS2 (room temperature extraordinary refractive index).

FIG. 3
FIG. 3

Derivative of coherence length with respect to temperature dlc/dT vs wavelength for CdGeP2.

Tables (2)

Tables Icon

TABLE I Sellmeier coefficients for ZnGeP2, CdGeP2 and CuGaS2 at room temperature (20° C) and at a higher temperature which is 70° C for ZnGeP2, 118° C for CdGeP2 and 120° C for CuGaS2. n2 = A + B/(1 − C/λ2) + D/(1 − E/λ2)

Tables Icon

TABLE II Temperature-dependent Sellmeier coefficients over a rise in temperature from room temperature. The dependence is linear and least-squares straight line fitted constants (m and c) are shown. X = mT + c, where X = A, B, C, and D. And T can vary from 20° C to 70° C for ZnGeP2, to 118° C for CdGeP2 and to 120° C for CuGaS2. The coefficient E remains constant for both polarizations as well as for the temperature range as per reasons explained in the text.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

n 2 = A + B 1 C / λ 2 + D 1 E / λ 2