Abstract

Using the probability density analysis mode in a digital correlator, a simple technique for determining the scattering distribution of large aerosols and the overall quantity of aerosols is developed. It is found that a simple measurement of the average count rate is sufficient for the assessment of the performance of both single-particle correlated laser Doppler and laser time-of-flight velocimeters. In terms of the experimental parameters and the measured quantity of aerosols, an equation that describes the power and range dependences of the unambiguous rate of remote wind speed measurements is derived. Laboratory experimental results that test the validity of this equation are reported.

© 1979 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. G. Bartlett and C. Y. She, Appl. Opt. 15, 1980 (1976).
    [Crossref] [PubMed]
  2. K. G. Bartlett and C. Y. She, Opt. Lett. 1, 175 (1977).
    [Crossref] [PubMed]
  3. C. E. Junge, Air Chemistry and Radioactivity (Academic, New York, 1963).
  4. G. W. Isreal, Trace Elements in the Atmosphere (Ann Arbor Science, Ann Arbor, 1974).
  5. A. J. Hughes and E. R. Pike, Appl. Opt. 12, 597 (1973).
    [Crossref] [PubMed]
  6. V. Digiorgio and J. G. Lastovka, Phys. Rev. A 4, 2033 (1971).
    [Crossref]
  7. K. G. Bartlett, “Single Particle Correlation Techniques for Remote Measurement of Wind Speed,” Ph.D. thesis (Colorado State University, 1977) (unpublished).
  8. G. Bedard, Phys. Rev. 161, 1304 (1967).
    [Crossref]
  9. C. Y. She, W. M. Fairbank, and K. W. Billman, Opt. Lett. 2, 30 (1978).
    [Crossref]
  10. G. R. Ochs and R. S. Lawrence, ESSA Tech. Rept. ERL 106-WPL 6 (1969).

1978 (1)

1977 (1)

1976 (1)

1973 (1)

1971 (1)

V. Digiorgio and J. G. Lastovka, Phys. Rev. A 4, 2033 (1971).
[Crossref]

1967 (1)

G. Bedard, Phys. Rev. 161, 1304 (1967).
[Crossref]

Bartlett, K. G.

K. G. Bartlett and C. Y. She, Opt. Lett. 1, 175 (1977).
[Crossref] [PubMed]

K. G. Bartlett and C. Y. She, Appl. Opt. 15, 1980 (1976).
[Crossref] [PubMed]

K. G. Bartlett, “Single Particle Correlation Techniques for Remote Measurement of Wind Speed,” Ph.D. thesis (Colorado State University, 1977) (unpublished).

Bedard, G.

G. Bedard, Phys. Rev. 161, 1304 (1967).
[Crossref]

Billman, K. W.

Digiorgio, V.

V. Digiorgio and J. G. Lastovka, Phys. Rev. A 4, 2033 (1971).
[Crossref]

Fairbank, W. M.

Hughes, A. J.

Isreal, G. W.

G. W. Isreal, Trace Elements in the Atmosphere (Ann Arbor Science, Ann Arbor, 1974).

Junge, C. E.

C. E. Junge, Air Chemistry and Radioactivity (Academic, New York, 1963).

Lastovka, J. G.

V. Digiorgio and J. G. Lastovka, Phys. Rev. A 4, 2033 (1971).
[Crossref]

Lawrence, R. S.

G. R. Ochs and R. S. Lawrence, ESSA Tech. Rept. ERL 106-WPL 6 (1969).

Ochs, G. R.

G. R. Ochs and R. S. Lawrence, ESSA Tech. Rept. ERL 106-WPL 6 (1969).

Pike, E. R.

She, C. Y.

Appl. Opt. (2)

Opt. Lett. (2)

Phys. Rev. (1)

G. Bedard, Phys. Rev. 161, 1304 (1967).
[Crossref]

Phys. Rev. A (1)

V. Digiorgio and J. G. Lastovka, Phys. Rev. A 4, 2033 (1971).
[Crossref]

Other (4)

K. G. Bartlett, “Single Particle Correlation Techniques for Remote Measurement of Wind Speed,” Ph.D. thesis (Colorado State University, 1977) (unpublished).

G. R. Ochs and R. S. Lawrence, ESSA Tech. Rept. ERL 106-WPL 6 (1969).

C. E. Junge, Air Chemistry and Radioactivity (Academic, New York, 1963).

G. W. Isreal, Trace Elements in the Atmosphere (Ann Arbor Science, Ann Arbor, 1974).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

FIG. 1
FIG. 1

Parameters describing the scattering volume: (a) LDV and (b) LTV.

FIG. 2
FIG. 2

Probability density distribution of light backscattered from indoor particulates compared to calculated values.

FIG. 3
FIG. 3

Plot of the number of wind speed measurements in 800 s vs laser power.

FIG. 4
FIG. 4

Plot of the number of wind speed measurements in 500 s vs range.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

P dc = P 0 A V π ρ 2 R 2 0 σ ( r ) d N d r d r ,
P dc κ h ν / 4 η τ 0 ,
P s = P 0 A σ ( r ) / π 2 ρ 2 R 2 f h ν / η τ 0 .
F = V T t r s d N d r d r ,
C ( n ) = i = 1 47 ( i ) n e i N ( i ) n ! ,
F T = n r s 2 m C ( n ) ,
F = V T t r s c 0 r 5 d r = V c 0 4 T t ρ 4 f 2 ( η A K 0 π h ν ) 2 ( P 0 τ 0 R 2 ) 2
c 0 = 0 d N d r d r = c 0 0 d N d r d r
A N = P dc ( h ν / η τ 0 ) = P 0 A Δ K 0 c 0 η τ 0 2 R sin α 0 2 h ν
c 0 = 2 A N R sin α 0 2 h ν / P 0 A Δ K 0 τ 0 .
F P 0 2 .
F R 4 .