Abstract

Opponent chromatic response functions were determined for monochromatic, equal-luminance stimuli from 400 to 700 nm for three observers using a hue cancellation procedure. The same observers scaled the hue of the stimuli using the terms red, green, yellow, and blue. The results showed that the hue scaling was accurately predicted from the cancellation functions using the model of Hurvich and Jameson. Theoretical curves were generated to fit the chromatic response functions with a linear combination of three cone photopigments. The theoretical photopigments were based on an iodopsin nomogram with λmax at a = 435, β = 530, and γ = 562 nm. An estimate of the density of each observer’s preretinal optic media was obtained in order to relate the photopigment absorption spectra to the psychophysical data. Good linear fits were obtained for each observer’s red-green curve, but not for the yellow-blue curves. A nonlinear model with an expansive exponent was used to fit the yellow-blue response functions with the three theoretical photopigments.

© 1979 Optical Society of America

Full Article  |  PDF Article
Related Articles
Spectral mechanisms of spatially induced blackness: data and quantitative model

Keizo Shinomori, Brooke E. Schefrin, and John S. Werner
J. Opt. Soc. Am. A 14(2) 372-387 (1997)

Linearity of hue cancellation in sex-linked dichromacy

Kenneth Knoblauch, Lawrence Sirovich, and B. R. Wooten
J. Opt. Soc. Am. A 2(2) 136-146 (1985)

Effect of light adaptation on the perceptual red–green and yellow–blue opponent-color responses

Shigeko Takahashi, Yoshimichi Ejima, and Munehira Akita
J. Opt. Soc. Am. A 2(5) 705-712 (1985)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (11)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (8)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (6)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription