Abstract

Opponent chromatic response functions were determined for monochromatic, equal-luminance stimuli from 400 to 700 nm for three observers using a hue cancellation procedure. The same observers scaled the hue of the stimuli using the terms red, green, yellow, and blue. The results showed that the hue scaling was accurately predicted from the cancellation functions using the model of Hurvich and Jameson. Theoretical curves were generated to fit the chromatic response functions with a linear combination of three cone photopigments. The theoretical photopigments were based on an iodopsin nomogram with λmax at a = 435, β = 530, and γ = 562 nm. An estimate of the density of each observer’s preretinal optic media was obtained in order to relate the photopigment absorption spectra to the psychophysical data. Good linear fits were obtained for each observer’s red-green curve, but not for the yellow-blue curves. A nonlinear model with an expansive exponent was used to fit the yellow-blue response functions with the three theoretical photopigments.

© 1979 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Jameson and L. M. Hurvich, “Some quantitative aspects of an opponent-colors theory. I. Chromatic responses and spectral saturation,” J. Opt. Soc. Am. 45, 546–552 (1955).
    [Crossref]
  2. L. M. Hurvich and D. Jameson, “Some quantitative aspects of an opponent-colors theory. II. Brightness saturation, and hue in normal and dichromatic vision,” J. Opt. Soc. Am. 45, 602–616 (1955).
    [Crossref] [PubMed]
  3. D. Jameson and L. M. Hurvich, “Some quantitative aspects of an opponent-colors theory. III. Changes in brightness, saturation, and hue with chromatic adaptation,” J. Opt. Soc. Am. 46, 405–415 (1956).
    [Crossref] [PubMed]
  4. L. M. Hurvich and D. Jameson, “Some quantitative aspects of an opponent-colors theory. IV. A psychological color specifications system,” J. Opt. Soc. Am. 46, 416–421 (1956).
    [Crossref] [PubMed]
  5. E. Hering, Outlines of a Theory of the Light Sense, translated by L. M. Hurvich and D. Jameson (Harvard University, Cambridge, MA, 1964).
  6. P. Gouras, “Identification of cone mechanisms in monkey ganglion cells,” J. Physiol. (Lond.) 199, 533–547 (1968).
  7. R. L. DeValois, “Analysis and coding of color vision in the primate visual system,” Cold Spring Harbor Symp. Quant. Biol. 30, 567–579 (1965).
    [Crossref]
  8. T. N. Wiesel and D. H. Hubel, “Spatial and chromatic interaction in the lateral geniculate body of the rhesus monkey,” J. Neurophysiol. 29, 115–1156 (1966).
  9. P. Gouras, “Opponent-colour cells in different layers of foveal striate cortex,” J. Physiol. (Lond.) 238, 583–602 (1974).
  10. J. T. Yates, “Chromatic information processing in the foveal projection (area striata) of unanesthetized primate,” Vision Res. 14, 163–173 (1974).
    [Crossref] [PubMed]
  11. B. Berlin and P. Kay, Basic Color Terms: Their Universality and Evolution (University of California, Berkeley, 1969).
  12. E. R. Heider, “Universals in color naming and memory,” J. Exp. Psychol. 93, 10–20 (1972).
    [Crossref] [PubMed]
  13. R. M. Boynton and J. Gordon, “Bezold-Brücke hue shift measured by color-naming technique,” J. Opt. Soc. Am. 55, 78–86 (1965).
    [Crossref]
  14. A. C. Beare, “Color-name as a function of wavelength,” Am. J. Psychol. 76, 248–256 (1963).
    [Crossref] [PubMed]
  15. C. E. Sternheim and R. M. Boynton, “Uniqueness of perceived hues investigated with a continuous judgemental technique,” J. Exp. Psychol. 72, 770–776 (1966).
    [Crossref] [PubMed]
  16. R. T. Kintz, J. A. Parker, and R. M. Boynton, “Information transmission in spectral color naming,” Percept. Psychophys. 5, 241–245 (1969).
    [Crossref]
  17. B. R. Wooten, “The effects of simultaneous and successive chromatic contrast on perceived hue,” Ph.D. thesis, Brown University (University Microfilms, Ann Arbor, 1970).
  18. J. Gordon and I. Abramov, “Color vision in the peripheral retina. II. Hue and saturation,” J. Opt. Soc. Am. 67, 202–207 (1977).
    [Crossref] [PubMed]
  19. P. K. Brown and G. Wald, “Visual pigments in human and monkey retinas,” Nature 200, 37–43 (1963).
    [Crossref] [PubMed]
  20. P. K. Brown and G. Wald, “Visual pigments in single rods and cones of the human retina,” Science 144, 45–52 (1964).
    [Crossref] [PubMed]
  21. W. B. Marks, W. H. Dobelle, and E. F. MacNichol, “Visual pigments of single primate cones,” Science 143, 1181–1183 (1964).
    [Crossref] [PubMed]
  22. W. A. H. Rushton, “Chlorolabe in the normal eye,” J. Physiol. (Lond.) 170, 10–11P (1964).
  23. H. D. Baker and W. A. H. Rushton, “The red-sensitive pigment in normal cones,” J. Physiol. (Lond.) 176, 56–72 (1965).
  24. V. C. Smith and J. Pokorny, “Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm,” Vision Res. 15, 161–171 (1975).
    [Crossref] [PubMed]
  25. H. J. A. Dartnall, “The interpretation of spectral sensitivity curves,” Br. Med. Bull. 9, 24–30 (1953).
    [PubMed]
  26. D. Jameson and L. M. Hurvich, “Opponent-response functions related to measured cone photopigments,” J. Opt. Soc. Am. 58, 429–430 (1968).
    [Crossref]
  27. M. I. Romeskie, “Chromatic opponent-response functions of anomalous trichromats,” Ph.D. Thesis, Brown University (University Microfilms, Ann Arbor, 1976).
  28. J. Larimer, D. H. Krantz, and C. M. Cicerone, “Opponent process additivity—I: Red/green equilibria,” Vision Res. 14, 1127–1140 (1974).
    [Crossref] [PubMed]
  29. J. Larimer, D. H. Krantz, and C. M. Cicerone, “Opponent process additivity—II. Yellow/blue equilibria and nonlinear models,” Vision Res. 15, 723–731 (1975).
    [Crossref] [PubMed]
  30. G. Westheimer, “The Maxwellian view,” Vision Res. 6, 669–682 (1966).
    [Crossref] [PubMed]
  31. F. L. Dimmick and M. R. Hubbard, “The spectral location of psychologically unique yellow, green, and blue,” Am. J. Psychol. 52, 242–254 (1939).
    [Crossref]
  32. L. M. Hurvich, D. Jameson, and J. D. Cohen, “The experimental determination of unique green in the spectrum,” Percept. Psychophys. 4, 65–68 (1968).
    [Crossref]
  33. D. B. Judd, Handbook of Experimental Psychology edited by S. S. Stevens (Wiley, New York, 1951), Chap. 22.
  34. G. Wald, P. K. Brown, and P. H. Smith, “Iodopsin,” J. Gen. Physiol. 38, 623–681 (1955).
  35. G. Wyszecki and W. S. Stiles, Color Science (Wiley, New York, 1967).
  36. G. Wald, “The receptors of human color vision,” Science 145, 1007–1016 (1964).
    [Crossref] [PubMed]
  37. B. R. Wooten and G. Wald, “Color-vision mechanisms in the peripheral retinas of normal and dichromatic observers,” J. Gen. Physiol. 61, 125–145 (1973).
  38. R. E. Marc and H. G. Sperling, “Chromatic organization of primate cones,” Science 196, 454–456 (1977).
    [Crossref] [PubMed]
  39. D. van Norren and J. J. Vos, “Spectral transmission of the human ocular media,” Vision Res. 14, 1237–1244 (1974).
    [Crossref]
  40. L. M. Hurvich, Handbook of Sensory Physiology, Vol. VII/4, edited by D. Jameson and L. M. Hurvich (Springer-Verlag, Berlin, 1972), Chap. 23.
  41. W. S. Stiles, “Further studies of visual mechanisms by the two-colour threshold method,” Coloquio sobre Problemas Opticos de la Vis. (Madrid), Union Int. Phys. Pure et Appliquee 1, 65–103 (1953).
  42. J. J. Vos and P. L. Walraven, “On the derivation of the foveal receptor primaries,” Vision Res. 11, 799–818 (1971).
    [Crossref] [PubMed]
  43. V. C. Smith and J. Pokorny, “Spectral sensitivity of color-blind observers and the cone photopigments,” Vision Res. 12, 2059–2071 (1972).
    [Crossref] [PubMed]
  44. W. S. Stiles, “Color vision: The approach through increment threshold sensitivity,” Proc. Natl. Acad. Sci. 45, 100–114 (1959).
    [Crossref]
  45. M. Alpern, G. B. Lee, and B. F. Spivey, “π1cone monochromatism,” Arch. Opthalmol. (Chic.) 74, 334–337 (1965).
    [Crossref]
  46. J. J. Vos, “Literature review of human macular absorption in the visible and its consequences for the cone receptor primaries” (Inst. Percept. RVO-TNO Report No. IZF 1972-17, Soesterberg).
  47. G. S. Brindley, J. J. DuCroz, and W. A. H. Rushton, “The flicker fusion frequency of the blue-sensitive mechanism of colour vision,” J. Physiol. (Lond.) 183, 497–500 (1966).
  48. J. Krauskopf and J. D. Mollon, “The independence of the temporal integration properties of individual chromatic mechanisms in the human eye,” J. Physiol. (Lond.) 219, 611–623 (1971).

1977 (2)

1975 (2)

V. C. Smith and J. Pokorny, “Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm,” Vision Res. 15, 161–171 (1975).
[Crossref] [PubMed]

J. Larimer, D. H. Krantz, and C. M. Cicerone, “Opponent process additivity—II. Yellow/blue equilibria and nonlinear models,” Vision Res. 15, 723–731 (1975).
[Crossref] [PubMed]

1974 (4)

P. Gouras, “Opponent-colour cells in different layers of foveal striate cortex,” J. Physiol. (Lond.) 238, 583–602 (1974).

J. T. Yates, “Chromatic information processing in the foveal projection (area striata) of unanesthetized primate,” Vision Res. 14, 163–173 (1974).
[Crossref] [PubMed]

D. van Norren and J. J. Vos, “Spectral transmission of the human ocular media,” Vision Res. 14, 1237–1244 (1974).
[Crossref]

J. Larimer, D. H. Krantz, and C. M. Cicerone, “Opponent process additivity—I: Red/green equilibria,” Vision Res. 14, 1127–1140 (1974).
[Crossref] [PubMed]

1973 (1)

B. R. Wooten and G. Wald, “Color-vision mechanisms in the peripheral retinas of normal and dichromatic observers,” J. Gen. Physiol. 61, 125–145 (1973).

1972 (2)

V. C. Smith and J. Pokorny, “Spectral sensitivity of color-blind observers and the cone photopigments,” Vision Res. 12, 2059–2071 (1972).
[Crossref] [PubMed]

E. R. Heider, “Universals in color naming and memory,” J. Exp. Psychol. 93, 10–20 (1972).
[Crossref] [PubMed]

1971 (2)

J. J. Vos and P. L. Walraven, “On the derivation of the foveal receptor primaries,” Vision Res. 11, 799–818 (1971).
[Crossref] [PubMed]

J. Krauskopf and J. D. Mollon, “The independence of the temporal integration properties of individual chromatic mechanisms in the human eye,” J. Physiol. (Lond.) 219, 611–623 (1971).

1969 (1)

R. T. Kintz, J. A. Parker, and R. M. Boynton, “Information transmission in spectral color naming,” Percept. Psychophys. 5, 241–245 (1969).
[Crossref]

1968 (3)

P. Gouras, “Identification of cone mechanisms in monkey ganglion cells,” J. Physiol. (Lond.) 199, 533–547 (1968).

L. M. Hurvich, D. Jameson, and J. D. Cohen, “The experimental determination of unique green in the spectrum,” Percept. Psychophys. 4, 65–68 (1968).
[Crossref]

D. Jameson and L. M. Hurvich, “Opponent-response functions related to measured cone photopigments,” J. Opt. Soc. Am. 58, 429–430 (1968).
[Crossref]

1966 (4)

C. E. Sternheim and R. M. Boynton, “Uniqueness of perceived hues investigated with a continuous judgemental technique,” J. Exp. Psychol. 72, 770–776 (1966).
[Crossref] [PubMed]

G. Westheimer, “The Maxwellian view,” Vision Res. 6, 669–682 (1966).
[Crossref] [PubMed]

T. N. Wiesel and D. H. Hubel, “Spatial and chromatic interaction in the lateral geniculate body of the rhesus monkey,” J. Neurophysiol. 29, 115–1156 (1966).

G. S. Brindley, J. J. DuCroz, and W. A. H. Rushton, “The flicker fusion frequency of the blue-sensitive mechanism of colour vision,” J. Physiol. (Lond.) 183, 497–500 (1966).

1965 (4)

M. Alpern, G. B. Lee, and B. F. Spivey, “π1cone monochromatism,” Arch. Opthalmol. (Chic.) 74, 334–337 (1965).
[Crossref]

H. D. Baker and W. A. H. Rushton, “The red-sensitive pigment in normal cones,” J. Physiol. (Lond.) 176, 56–72 (1965).

R. L. DeValois, “Analysis and coding of color vision in the primate visual system,” Cold Spring Harbor Symp. Quant. Biol. 30, 567–579 (1965).
[Crossref]

R. M. Boynton and J. Gordon, “Bezold-Brücke hue shift measured by color-naming technique,” J. Opt. Soc. Am. 55, 78–86 (1965).
[Crossref]

1964 (4)

P. K. Brown and G. Wald, “Visual pigments in single rods and cones of the human retina,” Science 144, 45–52 (1964).
[Crossref] [PubMed]

W. B. Marks, W. H. Dobelle, and E. F. MacNichol, “Visual pigments of single primate cones,” Science 143, 1181–1183 (1964).
[Crossref] [PubMed]

W. A. H. Rushton, “Chlorolabe in the normal eye,” J. Physiol. (Lond.) 170, 10–11P (1964).

G. Wald, “The receptors of human color vision,” Science 145, 1007–1016 (1964).
[Crossref] [PubMed]

1963 (2)

A. C. Beare, “Color-name as a function of wavelength,” Am. J. Psychol. 76, 248–256 (1963).
[Crossref] [PubMed]

P. K. Brown and G. Wald, “Visual pigments in human and monkey retinas,” Nature 200, 37–43 (1963).
[Crossref] [PubMed]

1959 (1)

W. S. Stiles, “Color vision: The approach through increment threshold sensitivity,” Proc. Natl. Acad. Sci. 45, 100–114 (1959).
[Crossref]

1956 (2)

1955 (3)

1953 (2)

H. J. A. Dartnall, “The interpretation of spectral sensitivity curves,” Br. Med. Bull. 9, 24–30 (1953).
[PubMed]

W. S. Stiles, “Further studies of visual mechanisms by the two-colour threshold method,” Coloquio sobre Problemas Opticos de la Vis. (Madrid), Union Int. Phys. Pure et Appliquee 1, 65–103 (1953).

1939 (1)

F. L. Dimmick and M. R. Hubbard, “The spectral location of psychologically unique yellow, green, and blue,” Am. J. Psychol. 52, 242–254 (1939).
[Crossref]

Abramov, I.

Alpern, M.

M. Alpern, G. B. Lee, and B. F. Spivey, “π1cone monochromatism,” Arch. Opthalmol. (Chic.) 74, 334–337 (1965).
[Crossref]

Baker, H. D.

H. D. Baker and W. A. H. Rushton, “The red-sensitive pigment in normal cones,” J. Physiol. (Lond.) 176, 56–72 (1965).

Beare, A. C.

A. C. Beare, “Color-name as a function of wavelength,” Am. J. Psychol. 76, 248–256 (1963).
[Crossref] [PubMed]

Berlin, B.

B. Berlin and P. Kay, Basic Color Terms: Their Universality and Evolution (University of California, Berkeley, 1969).

Boynton, R. M.

R. T. Kintz, J. A. Parker, and R. M. Boynton, “Information transmission in spectral color naming,” Percept. Psychophys. 5, 241–245 (1969).
[Crossref]

C. E. Sternheim and R. M. Boynton, “Uniqueness of perceived hues investigated with a continuous judgemental technique,” J. Exp. Psychol. 72, 770–776 (1966).
[Crossref] [PubMed]

R. M. Boynton and J. Gordon, “Bezold-Brücke hue shift measured by color-naming technique,” J. Opt. Soc. Am. 55, 78–86 (1965).
[Crossref]

Brindley, G. S.

G. S. Brindley, J. J. DuCroz, and W. A. H. Rushton, “The flicker fusion frequency of the blue-sensitive mechanism of colour vision,” J. Physiol. (Lond.) 183, 497–500 (1966).

Brown, P. K.

P. K. Brown and G. Wald, “Visual pigments in single rods and cones of the human retina,” Science 144, 45–52 (1964).
[Crossref] [PubMed]

P. K. Brown and G. Wald, “Visual pigments in human and monkey retinas,” Nature 200, 37–43 (1963).
[Crossref] [PubMed]

G. Wald, P. K. Brown, and P. H. Smith, “Iodopsin,” J. Gen. Physiol. 38, 623–681 (1955).

Cicerone, C. M.

J. Larimer, D. H. Krantz, and C. M. Cicerone, “Opponent process additivity—II. Yellow/blue equilibria and nonlinear models,” Vision Res. 15, 723–731 (1975).
[Crossref] [PubMed]

J. Larimer, D. H. Krantz, and C. M. Cicerone, “Opponent process additivity—I: Red/green equilibria,” Vision Res. 14, 1127–1140 (1974).
[Crossref] [PubMed]

Cohen, J. D.

L. M. Hurvich, D. Jameson, and J. D. Cohen, “The experimental determination of unique green in the spectrum,” Percept. Psychophys. 4, 65–68 (1968).
[Crossref]

Dartnall, H. J. A.

H. J. A. Dartnall, “The interpretation of spectral sensitivity curves,” Br. Med. Bull. 9, 24–30 (1953).
[PubMed]

DeValois, R. L.

R. L. DeValois, “Analysis and coding of color vision in the primate visual system,” Cold Spring Harbor Symp. Quant. Biol. 30, 567–579 (1965).
[Crossref]

Dimmick, F. L.

F. L. Dimmick and M. R. Hubbard, “The spectral location of psychologically unique yellow, green, and blue,” Am. J. Psychol. 52, 242–254 (1939).
[Crossref]

Dobelle, W. H.

W. B. Marks, W. H. Dobelle, and E. F. MacNichol, “Visual pigments of single primate cones,” Science 143, 1181–1183 (1964).
[Crossref] [PubMed]

DuCroz, J. J.

G. S. Brindley, J. J. DuCroz, and W. A. H. Rushton, “The flicker fusion frequency of the blue-sensitive mechanism of colour vision,” J. Physiol. (Lond.) 183, 497–500 (1966).

Gordon, J.

Gouras, P.

P. Gouras, “Opponent-colour cells in different layers of foveal striate cortex,” J. Physiol. (Lond.) 238, 583–602 (1974).

P. Gouras, “Identification of cone mechanisms in monkey ganglion cells,” J. Physiol. (Lond.) 199, 533–547 (1968).

Heider, E. R.

E. R. Heider, “Universals in color naming and memory,” J. Exp. Psychol. 93, 10–20 (1972).
[Crossref] [PubMed]

Hering, E.

E. Hering, Outlines of a Theory of the Light Sense, translated by L. M. Hurvich and D. Jameson (Harvard University, Cambridge, MA, 1964).

Hubbard, M. R.

F. L. Dimmick and M. R. Hubbard, “The spectral location of psychologically unique yellow, green, and blue,” Am. J. Psychol. 52, 242–254 (1939).
[Crossref]

Hubel, D. H.

T. N. Wiesel and D. H. Hubel, “Spatial and chromatic interaction in the lateral geniculate body of the rhesus monkey,” J. Neurophysiol. 29, 115–1156 (1966).

Hurvich, L. M.

Jameson, D.

Judd, D. B.

D. B. Judd, Handbook of Experimental Psychology edited by S. S. Stevens (Wiley, New York, 1951), Chap. 22.

Kay, P.

B. Berlin and P. Kay, Basic Color Terms: Their Universality and Evolution (University of California, Berkeley, 1969).

Kintz, R. T.

R. T. Kintz, J. A. Parker, and R. M. Boynton, “Information transmission in spectral color naming,” Percept. Psychophys. 5, 241–245 (1969).
[Crossref]

Krantz, D. H.

J. Larimer, D. H. Krantz, and C. M. Cicerone, “Opponent process additivity—II. Yellow/blue equilibria and nonlinear models,” Vision Res. 15, 723–731 (1975).
[Crossref] [PubMed]

J. Larimer, D. H. Krantz, and C. M. Cicerone, “Opponent process additivity—I: Red/green equilibria,” Vision Res. 14, 1127–1140 (1974).
[Crossref] [PubMed]

Krauskopf, J.

J. Krauskopf and J. D. Mollon, “The independence of the temporal integration properties of individual chromatic mechanisms in the human eye,” J. Physiol. (Lond.) 219, 611–623 (1971).

Larimer, J.

J. Larimer, D. H. Krantz, and C. M. Cicerone, “Opponent process additivity—II. Yellow/blue equilibria and nonlinear models,” Vision Res. 15, 723–731 (1975).
[Crossref] [PubMed]

J. Larimer, D. H. Krantz, and C. M. Cicerone, “Opponent process additivity—I: Red/green equilibria,” Vision Res. 14, 1127–1140 (1974).
[Crossref] [PubMed]

Lee, G. B.

M. Alpern, G. B. Lee, and B. F. Spivey, “π1cone monochromatism,” Arch. Opthalmol. (Chic.) 74, 334–337 (1965).
[Crossref]

MacNichol, E. F.

W. B. Marks, W. H. Dobelle, and E. F. MacNichol, “Visual pigments of single primate cones,” Science 143, 1181–1183 (1964).
[Crossref] [PubMed]

Marc, R. E.

R. E. Marc and H. G. Sperling, “Chromatic organization of primate cones,” Science 196, 454–456 (1977).
[Crossref] [PubMed]

Marks, W. B.

W. B. Marks, W. H. Dobelle, and E. F. MacNichol, “Visual pigments of single primate cones,” Science 143, 1181–1183 (1964).
[Crossref] [PubMed]

Mollon, J. D.

J. Krauskopf and J. D. Mollon, “The independence of the temporal integration properties of individual chromatic mechanisms in the human eye,” J. Physiol. (Lond.) 219, 611–623 (1971).

Parker, J. A.

R. T. Kintz, J. A. Parker, and R. M. Boynton, “Information transmission in spectral color naming,” Percept. Psychophys. 5, 241–245 (1969).
[Crossref]

Pokorny, J.

V. C. Smith and J. Pokorny, “Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm,” Vision Res. 15, 161–171 (1975).
[Crossref] [PubMed]

V. C. Smith and J. Pokorny, “Spectral sensitivity of color-blind observers and the cone photopigments,” Vision Res. 12, 2059–2071 (1972).
[Crossref] [PubMed]

Romeskie, M. I.

M. I. Romeskie, “Chromatic opponent-response functions of anomalous trichromats,” Ph.D. Thesis, Brown University (University Microfilms, Ann Arbor, 1976).

Rushton, W. A. H.

G. S. Brindley, J. J. DuCroz, and W. A. H. Rushton, “The flicker fusion frequency of the blue-sensitive mechanism of colour vision,” J. Physiol. (Lond.) 183, 497–500 (1966).

H. D. Baker and W. A. H. Rushton, “The red-sensitive pigment in normal cones,” J. Physiol. (Lond.) 176, 56–72 (1965).

W. A. H. Rushton, “Chlorolabe in the normal eye,” J. Physiol. (Lond.) 170, 10–11P (1964).

Smith, P. H.

G. Wald, P. K. Brown, and P. H. Smith, “Iodopsin,” J. Gen. Physiol. 38, 623–681 (1955).

Smith, V. C.

V. C. Smith and J. Pokorny, “Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm,” Vision Res. 15, 161–171 (1975).
[Crossref] [PubMed]

V. C. Smith and J. Pokorny, “Spectral sensitivity of color-blind observers and the cone photopigments,” Vision Res. 12, 2059–2071 (1972).
[Crossref] [PubMed]

Sperling, H. G.

R. E. Marc and H. G. Sperling, “Chromatic organization of primate cones,” Science 196, 454–456 (1977).
[Crossref] [PubMed]

Spivey, B. F.

M. Alpern, G. B. Lee, and B. F. Spivey, “π1cone monochromatism,” Arch. Opthalmol. (Chic.) 74, 334–337 (1965).
[Crossref]

Sternheim, C. E.

C. E. Sternheim and R. M. Boynton, “Uniqueness of perceived hues investigated with a continuous judgemental technique,” J. Exp. Psychol. 72, 770–776 (1966).
[Crossref] [PubMed]

Stiles, W. S.

W. S. Stiles, “Color vision: The approach through increment threshold sensitivity,” Proc. Natl. Acad. Sci. 45, 100–114 (1959).
[Crossref]

W. S. Stiles, “Further studies of visual mechanisms by the two-colour threshold method,” Coloquio sobre Problemas Opticos de la Vis. (Madrid), Union Int. Phys. Pure et Appliquee 1, 65–103 (1953).

G. Wyszecki and W. S. Stiles, Color Science (Wiley, New York, 1967).

van Norren, D.

D. van Norren and J. J. Vos, “Spectral transmission of the human ocular media,” Vision Res. 14, 1237–1244 (1974).
[Crossref]

Vos, J. J.

D. van Norren and J. J. Vos, “Spectral transmission of the human ocular media,” Vision Res. 14, 1237–1244 (1974).
[Crossref]

J. J. Vos and P. L. Walraven, “On the derivation of the foveal receptor primaries,” Vision Res. 11, 799–818 (1971).
[Crossref] [PubMed]

J. J. Vos, “Literature review of human macular absorption in the visible and its consequences for the cone receptor primaries” (Inst. Percept. RVO-TNO Report No. IZF 1972-17, Soesterberg).

Wald, G.

B. R. Wooten and G. Wald, “Color-vision mechanisms in the peripheral retinas of normal and dichromatic observers,” J. Gen. Physiol. 61, 125–145 (1973).

G. Wald, “The receptors of human color vision,” Science 145, 1007–1016 (1964).
[Crossref] [PubMed]

P. K. Brown and G. Wald, “Visual pigments in single rods and cones of the human retina,” Science 144, 45–52 (1964).
[Crossref] [PubMed]

P. K. Brown and G. Wald, “Visual pigments in human and monkey retinas,” Nature 200, 37–43 (1963).
[Crossref] [PubMed]

G. Wald, P. K. Brown, and P. H. Smith, “Iodopsin,” J. Gen. Physiol. 38, 623–681 (1955).

Walraven, P. L.

J. J. Vos and P. L. Walraven, “On the derivation of the foveal receptor primaries,” Vision Res. 11, 799–818 (1971).
[Crossref] [PubMed]

Westheimer, G.

G. Westheimer, “The Maxwellian view,” Vision Res. 6, 669–682 (1966).
[Crossref] [PubMed]

Wiesel, T. N.

T. N. Wiesel and D. H. Hubel, “Spatial and chromatic interaction in the lateral geniculate body of the rhesus monkey,” J. Neurophysiol. 29, 115–1156 (1966).

Wooten, B. R.

B. R. Wooten and G. Wald, “Color-vision mechanisms in the peripheral retinas of normal and dichromatic observers,” J. Gen. Physiol. 61, 125–145 (1973).

B. R. Wooten, “The effects of simultaneous and successive chromatic contrast on perceived hue,” Ph.D. thesis, Brown University (University Microfilms, Ann Arbor, 1970).

Wyszecki, G.

G. Wyszecki and W. S. Stiles, Color Science (Wiley, New York, 1967).

Yates, J. T.

J. T. Yates, “Chromatic information processing in the foveal projection (area striata) of unanesthetized primate,” Vision Res. 14, 163–173 (1974).
[Crossref] [PubMed]

Am. J. Psychol. (2)

A. C. Beare, “Color-name as a function of wavelength,” Am. J. Psychol. 76, 248–256 (1963).
[Crossref] [PubMed]

F. L. Dimmick and M. R. Hubbard, “The spectral location of psychologically unique yellow, green, and blue,” Am. J. Psychol. 52, 242–254 (1939).
[Crossref]

Arch. Opthalmol. (Chic.) (1)

M. Alpern, G. B. Lee, and B. F. Spivey, “π1cone monochromatism,” Arch. Opthalmol. (Chic.) 74, 334–337 (1965).
[Crossref]

Br. Med. Bull. (1)

H. J. A. Dartnall, “The interpretation of spectral sensitivity curves,” Br. Med. Bull. 9, 24–30 (1953).
[PubMed]

Cold Spring Harbor Symp. Quant. Biol. (1)

R. L. DeValois, “Analysis and coding of color vision in the primate visual system,” Cold Spring Harbor Symp. Quant. Biol. 30, 567–579 (1965).
[Crossref]

Coloquio sobre Problemas Opticos de la Vis. (Madrid) (1)

W. S. Stiles, “Further studies of visual mechanisms by the two-colour threshold method,” Coloquio sobre Problemas Opticos de la Vis. (Madrid), Union Int. Phys. Pure et Appliquee 1, 65–103 (1953).

J. Exp. Psychol. (2)

C. E. Sternheim and R. M. Boynton, “Uniqueness of perceived hues investigated with a continuous judgemental technique,” J. Exp. Psychol. 72, 770–776 (1966).
[Crossref] [PubMed]

E. R. Heider, “Universals in color naming and memory,” J. Exp. Psychol. 93, 10–20 (1972).
[Crossref] [PubMed]

J. Gen. Physiol. (2)

G. Wald, P. K. Brown, and P. H. Smith, “Iodopsin,” J. Gen. Physiol. 38, 623–681 (1955).

B. R. Wooten and G. Wald, “Color-vision mechanisms in the peripheral retinas of normal and dichromatic observers,” J. Gen. Physiol. 61, 125–145 (1973).

J. Neurophysiol. (1)

T. N. Wiesel and D. H. Hubel, “Spatial and chromatic interaction in the lateral geniculate body of the rhesus monkey,” J. Neurophysiol. 29, 115–1156 (1966).

J. Opt. Soc. Am. (7)

J. Physiol. (Lond.) (6)

W. A. H. Rushton, “Chlorolabe in the normal eye,” J. Physiol. (Lond.) 170, 10–11P (1964).

H. D. Baker and W. A. H. Rushton, “The red-sensitive pigment in normal cones,” J. Physiol. (Lond.) 176, 56–72 (1965).

P. Gouras, “Opponent-colour cells in different layers of foveal striate cortex,” J. Physiol. (Lond.) 238, 583–602 (1974).

P. Gouras, “Identification of cone mechanisms in monkey ganglion cells,” J. Physiol. (Lond.) 199, 533–547 (1968).

G. S. Brindley, J. J. DuCroz, and W. A. H. Rushton, “The flicker fusion frequency of the blue-sensitive mechanism of colour vision,” J. Physiol. (Lond.) 183, 497–500 (1966).

J. Krauskopf and J. D. Mollon, “The independence of the temporal integration properties of individual chromatic mechanisms in the human eye,” J. Physiol. (Lond.) 219, 611–623 (1971).

Nature (1)

P. K. Brown and G. Wald, “Visual pigments in human and monkey retinas,” Nature 200, 37–43 (1963).
[Crossref] [PubMed]

Percept. Psychophys. (2)

R. T. Kintz, J. A. Parker, and R. M. Boynton, “Information transmission in spectral color naming,” Percept. Psychophys. 5, 241–245 (1969).
[Crossref]

L. M. Hurvich, D. Jameson, and J. D. Cohen, “The experimental determination of unique green in the spectrum,” Percept. Psychophys. 4, 65–68 (1968).
[Crossref]

Proc. Natl. Acad. Sci. (1)

W. S. Stiles, “Color vision: The approach through increment threshold sensitivity,” Proc. Natl. Acad. Sci. 45, 100–114 (1959).
[Crossref]

Science (4)

G. Wald, “The receptors of human color vision,” Science 145, 1007–1016 (1964).
[Crossref] [PubMed]

R. E. Marc and H. G. Sperling, “Chromatic organization of primate cones,” Science 196, 454–456 (1977).
[Crossref] [PubMed]

P. K. Brown and G. Wald, “Visual pigments in single rods and cones of the human retina,” Science 144, 45–52 (1964).
[Crossref] [PubMed]

W. B. Marks, W. H. Dobelle, and E. F. MacNichol, “Visual pigments of single primate cones,” Science 143, 1181–1183 (1964).
[Crossref] [PubMed]

Vision Res. (8)

J. T. Yates, “Chromatic information processing in the foveal projection (area striata) of unanesthetized primate,” Vision Res. 14, 163–173 (1974).
[Crossref] [PubMed]

D. van Norren and J. J. Vos, “Spectral transmission of the human ocular media,” Vision Res. 14, 1237–1244 (1974).
[Crossref]

V. C. Smith and J. Pokorny, “Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm,” Vision Res. 15, 161–171 (1975).
[Crossref] [PubMed]

J. Larimer, D. H. Krantz, and C. M. Cicerone, “Opponent process additivity—I: Red/green equilibria,” Vision Res. 14, 1127–1140 (1974).
[Crossref] [PubMed]

J. Larimer, D. H. Krantz, and C. M. Cicerone, “Opponent process additivity—II. Yellow/blue equilibria and nonlinear models,” Vision Res. 15, 723–731 (1975).
[Crossref] [PubMed]

G. Westheimer, “The Maxwellian view,” Vision Res. 6, 669–682 (1966).
[Crossref] [PubMed]

J. J. Vos and P. L. Walraven, “On the derivation of the foveal receptor primaries,” Vision Res. 11, 799–818 (1971).
[Crossref] [PubMed]

V. C. Smith and J. Pokorny, “Spectral sensitivity of color-blind observers and the cone photopigments,” Vision Res. 12, 2059–2071 (1972).
[Crossref] [PubMed]

Other (8)

J. J. Vos, “Literature review of human macular absorption in the visible and its consequences for the cone receptor primaries” (Inst. Percept. RVO-TNO Report No. IZF 1972-17, Soesterberg).

M. I. Romeskie, “Chromatic opponent-response functions of anomalous trichromats,” Ph.D. Thesis, Brown University (University Microfilms, Ann Arbor, 1976).

L. M. Hurvich, Handbook of Sensory Physiology, Vol. VII/4, edited by D. Jameson and L. M. Hurvich (Springer-Verlag, Berlin, 1972), Chap. 23.

D. B. Judd, Handbook of Experimental Psychology edited by S. S. Stevens (Wiley, New York, 1951), Chap. 22.

G. Wyszecki and W. S. Stiles, Color Science (Wiley, New York, 1967).

B. Berlin and P. Kay, Basic Color Terms: Their Universality and Evolution (University of California, Berkeley, 1969).

E. Hering, Outlines of a Theory of the Light Sense, translated by L. M. Hurvich and D. Jameson (Harvard University, Cambridge, MA, 1964).

B. R. Wooten, “The effects of simultaneous and successive chromatic contrast on perceived hue,” Ph.D. thesis, Brown University (University Microfilms, Ann Arbor, 1970).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

FIG. 1
FIG. 1

Log relative chromatic valence of the red-green (squares) and yellow-blue (circles) opponent mechanisms of observer A. W.; plotted for an equal energy spectrum.

FIG. 2
FIG. 2

Log relative chromatic valence of the red-green (squares) and yellow-blue (circles) opponent mechanisms of observer J. F.; plotted for an equal energy spectrum.

FIG. 3
FIG. 3

Log relative chromatic valence of the red-green (squares) and yellow-blue (circles) opponent mechanisms of observer L. K.; plotted for an equal energy spectrum.

FIG. 4
FIG. 4

Hue naming data (squares) and hue naming predicted (circles) from Eq. (1) and the opponent cancellation functions shown in Fig. 1 for observer A. W. Red-green is plotted from 0% to 100% according to the left vertical axis and yellow-blue is plotted from 100% to 0% according to the right vertical axis. The smooth line was drawn by eye through the obtained hue naming data ignoring the predicted hue naming points. The arrows indicate the unique hue loci.

FIG. 5
FIG. 5

Hue naming data (squares) and hue naming predicted (circles) from Eq. (1) and the opponent cancellation functions shown in Fig. 2 for observer J. F. Red-green is plotted from 0% to 100% according to the left vertical axis, the yellow-blue is plotted from 100% to 0% according to the right vertical axis. The smooth line was drawn by eye through the obtained hue naming data ignoring the predicted hue naming points. The arrows indicate the unique hue loci.

FIG. 6
FIG. 6

Hue naming data (squares) and hue naming predicted (circles) from Eq. (1) and the opponent cancellation functions shown in Fig. 3 for observer L. K. Red-green is plotted from 0% to 100% according to the left vertical axis and yellow-blue is plotted from 100% to 0% according to the right vertical axis. The smooth line was drawn by eye through the obtained hue naming data ignoring the predicted hue naming points. The arrows indicate the unique hue loci.

FIG. 7
FIG. 7

Average hue naming data (squares) and average hue naming predicted from Eq. (1) and the opponent cancellation functions (circles) for the three observers. Red-green is plotted from 0% to 100% according to the left vertical axis and yellow-blue is plotted from 100% to 0% according to the right vertical axis. The smooth line was drawn by eye through the obtained hue naming data, ignoring the predicted hue naming points. The arrows indicate the unique hue loci.

FIG. 8
FIG. 8

Red-green chromatic valence is plotted for each observer for an equal energy spectrum. The smooth line is the best fitting linear combination [Eq. (2a)] of the three photopigments.

FIG. 9
FIG. 9

Yellow-blue chromatic valence is plotted for each observer for an equal energy spectrum. The smooth line is the best fitting linear combination [Eq. (2b)] of the three photopigments.

FIG. 10
FIG. 10

Yellow-blue chromatic valence is plotted for each observer for an equal energy spectrum. The smooth line is the best fitting nonlinear combination [Eq. (3)] of the three photopigments.

FIG. 11
FIG. 11

Yellow-blue chromatic valence is plotted for each observer for an equal energy spectrum. The smooth line is the best fitting nonlinear combination [Eq. (4)] of the three photopigments.

Tables (8)

Tables Icon

TABLE I Unique hue loci (nm).

Tables Icon

TABLE II Predicted and obtained hue naming percentages.

Tables Icon

TABLE III Estimation of preretinal absorption.

Tables Icon

TABLE IV Linear model.

Tables Icon

TABLE V Nonlinear models.

Tables Icon

TABLE VI Linear and nonlinear models fit with the Vos-Walraven primaries.

Tables Icon

TABLE VII Linear and nonlinear models: Previously published data.

Tables Icon

TABLE VIII Comparisons of fits for linear and nonlinear models to yb functions measured with 1 and 7 s flashes.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

h ( r , g ) λ = ( | r g | ) λ / ( | r g | + | y b | ) λ ,
h ( y , b ) λ = ( | y b | ) λ / ( | r g | + | y b | ) λ ,
( r g ) λ = k 4 α λ k 5 β λ + k 6 γ λ ,
( y b ) λ = k 1 α λ + k 2 β λ + k 3 γ λ .
( y b ) λ = k 1 α λ + k 2 β λ ± k 3 | γ λ β λ | n .
( y b ) λ = k 1 α λ + | k 2 β λ + k 3 γ λ | n .