Abstract

Methods in speckle imaging and adapative optics, as well as a new technique in digital image restoration, require the calculation of the Fourier phase spectrum from measurements of the differences on a two-dimensional grid of the phase spectrum. The calculation of phases from phase differences has been analyzed in the literature and relaxation mechanisms for computing the phase have been derived by least-squares analysis. In the following paper we formulate the phase reconstruction problem in terms of a vector-matrix multiplication, and we then show that previous solution methods are equivalent to this general description. We also analyze the errors in reconstruction and reconcile previously published error results based on simulations with an analytical error expression derived from Parseval’s theorem. Finally, we comment upon the rate of convergence of phase reconstructions, and discuss numerical analysis literature which indicates that the methods previously published for phase reconstruction can be made to converge much faster.

© 1979 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Speckle interferometry image reconstruction from the Fourier transform phase

Yu. M. Bruck and L. G. Sodin
J. Opt. Soc. Am. A 1(1) 73-80 (1984)

Reconstruction of discontinuous light-phase functions

Éric-Olivier Le Bigot, Walter J. Wild, and Edward J. Kibblewhite
Opt. Lett. 23(1) 10-12 (1998)

Signal reconstruction from noisy-phase and -magnitude data

Alexander M. Taratorin and Samuel Sideman
Appl. Opt. 33(23) 5415-5425 (1994)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (2)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (41)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription