Abstract

Projection matrices that project vectors onto surfaces from given directions are defined. The use of these matrices in hologram interferometry is discussed. They are shown to systematize the solution of a number of computation problems and to clarify the relationship between many of the vectorial parameters.

© 1980 Optical Society of America

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Schumann, "Some aspects of the optical techniques for strain determination," Exp. Mech., 13, 225–231 (1973).
  2. M. Dubas and W. Schumann, "Sur la détermination holographique de l'etat de déformation à la surface d'un corps non transparent," Opt. Acta. 21, 547–562 (1964).
  3. L. Brand, Vector and Tensor Analysis (Wiley, New York, 1947), p. 170.
  4. H. Goldstein, Classical Mechanics (Addison-Wesley, Reading, Mass. 1950), p. 146–149.
  5. K. A. Stetson, "Fringe interpretation for hologram interferometry of rigid-body motions and homogeneous deformations," J. Opt. Soc. Am. 64, 1–10 (1974).
  6. E. Ek and K. Biedermann, "Analysis of a system for hologram interferometry with a continuously scanning reconstruction beam," Appl. Opt. 16, 2535–2542 (1977).
  7. D. Noblis and C. M. Vest, "Statistical analysis of errors in holographic interferometry," Appl. Opt. 17, 2198–2204 (1978).
  8. R. Pryputniewicz and K. A. Stetson, "Holographic strain analysis: Extension of fringe vector method to include perspective," Appl. Opt. 15, 725–728 (1976).
  9. C. M. Vest, Holographic Interferometry (Wiley, New York, 1979), p. 112.
  10. N. Abramson, "Holographic contouring by translation," Appl. Opt. 15, 1018–1022 (1976).
  11. K. A. Stetson, "Fringe vectors and observed fringe vectors in hologram interferometry," Appl. Opt. 14, 272–273 (1975).
  12. K. A. Steston, "Homogeneous deformations: Determination by fringe vectors in hologram interferometry," Appl. Opt. 14, 2256–2259 (1975).
  13. Ref. 9, p. 76.
  14. L. Ek, (Private communication).

1978

1977

1976

1975

1974

1973

W. Schumann, "Some aspects of the optical techniques for strain determination," Exp. Mech., 13, 225–231 (1973).

1964

M. Dubas and W. Schumann, "Sur la détermination holographique de l'etat de déformation à la surface d'un corps non transparent," Opt. Acta. 21, 547–562 (1964).

Abramson, N.

Biedermann, K.

Brand, L.

L. Brand, Vector and Tensor Analysis (Wiley, New York, 1947), p. 170.

Dubas, M.

M. Dubas and W. Schumann, "Sur la détermination holographique de l'etat de déformation à la surface d'un corps non transparent," Opt. Acta. 21, 547–562 (1964).

Ek, E.

Ek, L.

L. Ek, (Private communication).

Goldstein, H.

H. Goldstein, Classical Mechanics (Addison-Wesley, Reading, Mass. 1950), p. 146–149.

Noblis, D.

Pryputniewicz, R.

Schumann, W.

W. Schumann, "Some aspects of the optical techniques for strain determination," Exp. Mech., 13, 225–231 (1973).

M. Dubas and W. Schumann, "Sur la détermination holographique de l'etat de déformation à la surface d'un corps non transparent," Opt. Acta. 21, 547–562 (1964).

Steston, K. A.

Stetson, K. A.

Vest, C. M.

Appl. Opt.

Exp. Mech.

W. Schumann, "Some aspects of the optical techniques for strain determination," Exp. Mech., 13, 225–231 (1973).

J. Opt. Soc. Am.

Opt. Acta.

M. Dubas and W. Schumann, "Sur la détermination holographique de l'etat de déformation à la surface d'un corps non transparent," Opt. Acta. 21, 547–562 (1964).

Other

L. Brand, Vector and Tensor Analysis (Wiley, New York, 1947), p. 170.

H. Goldstein, Classical Mechanics (Addison-Wesley, Reading, Mass. 1950), p. 146–149.

C. M. Vest, Holographic Interferometry (Wiley, New York, 1979), p. 112.

Ref. 9, p. 76.

L. Ek, (Private communication).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.