Abstract

Optoacoustic measurements of acetylene smoke in a simple nonresonant cell at wavelengths of 0.5145 and 10.6 μm give specific absorption coefficients AA of 8.3 ±0.9 and 0.76 ±0.1 m2 g−1, respectively. In the visible region, about 85% of the total optical attenuation is due to absorption. These data are consistent with a simple model in which the smoke is comprised of agglomerated carbon spheres. The experimentally determined responsivity of the optoacoustic cell is in good agreement with theory.

© 1979 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Optoacoustic Spectroscopy and Detection, edited by Y.-H. Pao, (Academic, New York, 1977).
  2. L. B. Kreuzer, “Ultralow gas concentration infrared absorption spectroscopy,” J. Appl. Phys,  42, 2934–2943 (1971).
    [Crossref]
  3. C. K. N. Patel and R. J. Kerl, “A new optoacoustic cell with improved performance,” Appl. Phys. Lett. 30, 578–579 (1977).
    [Crossref]
  4. P. V. Slobodskaya and N. F. Tkachenko, “Study of the Relaxation Time for the Vibrational Energy of the NO Molecule by Means of the Spectrophone,” Opt. Spectrosc. 29, 138–142 (1970).
  5. C. W. Bruce and R. G. Pinnick, “In-situ measurements of aerosol absorption with a resonant cw laser spectrophone,” Appl. Opt. 16, 1762–1765 (1977).
    [Crossref] [PubMed]
  6. R. W. Terhune and J. E. Anderson, “Spectrophone measurement of the absorption of visible light by aerosols in the atmosphere,” Opt. Lett. 1, 70–72 (1977).
    [Crossref] [PubMed]
  7. D. M. Roessler and F. R. Faxvog, “Optical properties of acetylene smoke at 0.5145 μ m and 10.6 μ m wavelengths,” J. Opt. Soc. Am. (to be published).
  8. F. R. Faxvog and D. M. Roessler, “Carbon aerosol visibility vs particle size distribution,” Appl Opt. 17, 2612–2616 (1978).
    [PubMed]
  9. W. F. Stoecker, “Smoke Density Measurement,” Mech. Engr. 72, 793–798 (1950).
  10. R. Tsu, H. J. Gonzalez, and I. C. Hernandez, “Observation of Splitting of the E2g Mode and Two-Phonon Spectrum in Graphites,” Solid State Commun. 27, 507–510 (1978).
    [Crossref]
  11. S. C. Graham, “The Refractive Indices of Isolated and Aggregated Soot Particles,” Combustion Sci. Technol. 9, 159–163 (1974).
    [Crossref]
  12. W. H. Dalzell and A. F. Sarofim, “Optical Constants of Soot and Their Application to Heat-Flux Calculations,” J. Heat Transfer 91, 100–104 (1969).
    [Crossref]
  13. P. J. Groblicki and C. R. Begeman, “Particle Size Variation in Diesel Car Exhaust,” SAE Paper 790421, February1979.
  14. D. F. Dolan and D. B. Kittelson, “Diesel Exhaust Aerosol Particle Size Distributions—Comparison of Theory and Experiment,” SAE paper 780110, February1978, pp. 1–7.
  15. Handbook of Chemistry and Physics, 58th Ed. (CRC, Cleveland, Ohio, 1977) p. D–192.
  16. F. E. Volz, “Infrared Absorption by Atmospheric Aerosol Substances,” J. Geophys. Res. 77, 1017–1031 (1972).
    [Crossref]
  17. F. R. Faxvog and D. M. Roessler, “Optoacoustic Measurement of Diesel Particulate Emissions,” J. Appl. Phys. (to be published).

1978 (2)

F. R. Faxvog and D. M. Roessler, “Carbon aerosol visibility vs particle size distribution,” Appl Opt. 17, 2612–2616 (1978).
[PubMed]

R. Tsu, H. J. Gonzalez, and I. C. Hernandez, “Observation of Splitting of the E2g Mode and Two-Phonon Spectrum in Graphites,” Solid State Commun. 27, 507–510 (1978).
[Crossref]

1977 (3)

1974 (1)

S. C. Graham, “The Refractive Indices of Isolated and Aggregated Soot Particles,” Combustion Sci. Technol. 9, 159–163 (1974).
[Crossref]

1972 (1)

F. E. Volz, “Infrared Absorption by Atmospheric Aerosol Substances,” J. Geophys. Res. 77, 1017–1031 (1972).
[Crossref]

1971 (1)

L. B. Kreuzer, “Ultralow gas concentration infrared absorption spectroscopy,” J. Appl. Phys,  42, 2934–2943 (1971).
[Crossref]

1970 (1)

P. V. Slobodskaya and N. F. Tkachenko, “Study of the Relaxation Time for the Vibrational Energy of the NO Molecule by Means of the Spectrophone,” Opt. Spectrosc. 29, 138–142 (1970).

1969 (1)

W. H. Dalzell and A. F. Sarofim, “Optical Constants of Soot and Their Application to Heat-Flux Calculations,” J. Heat Transfer 91, 100–104 (1969).
[Crossref]

1950 (1)

W. F. Stoecker, “Smoke Density Measurement,” Mech. Engr. 72, 793–798 (1950).

Anderson, J. E.

Begeman, C. R.

P. J. Groblicki and C. R. Begeman, “Particle Size Variation in Diesel Car Exhaust,” SAE Paper 790421, February1979.

Bruce, C. W.

Dalzell, W. H.

W. H. Dalzell and A. F. Sarofim, “Optical Constants of Soot and Their Application to Heat-Flux Calculations,” J. Heat Transfer 91, 100–104 (1969).
[Crossref]

Dolan, D. F.

D. F. Dolan and D. B. Kittelson, “Diesel Exhaust Aerosol Particle Size Distributions—Comparison of Theory and Experiment,” SAE paper 780110, February1978, pp. 1–7.

Faxvog, F. R.

F. R. Faxvog and D. M. Roessler, “Carbon aerosol visibility vs particle size distribution,” Appl Opt. 17, 2612–2616 (1978).
[PubMed]

D. M. Roessler and F. R. Faxvog, “Optical properties of acetylene smoke at 0.5145 μ m and 10.6 μ m wavelengths,” J. Opt. Soc. Am. (to be published).

F. R. Faxvog and D. M. Roessler, “Optoacoustic Measurement of Diesel Particulate Emissions,” J. Appl. Phys. (to be published).

Gonzalez, H. J.

R. Tsu, H. J. Gonzalez, and I. C. Hernandez, “Observation of Splitting of the E2g Mode and Two-Phonon Spectrum in Graphites,” Solid State Commun. 27, 507–510 (1978).
[Crossref]

Graham, S. C.

S. C. Graham, “The Refractive Indices of Isolated and Aggregated Soot Particles,” Combustion Sci. Technol. 9, 159–163 (1974).
[Crossref]

Groblicki, P. J.

P. J. Groblicki and C. R. Begeman, “Particle Size Variation in Diesel Car Exhaust,” SAE Paper 790421, February1979.

Hernandez, I. C.

R. Tsu, H. J. Gonzalez, and I. C. Hernandez, “Observation of Splitting of the E2g Mode and Two-Phonon Spectrum in Graphites,” Solid State Commun. 27, 507–510 (1978).
[Crossref]

Kerl, R. J.

C. K. N. Patel and R. J. Kerl, “A new optoacoustic cell with improved performance,” Appl. Phys. Lett. 30, 578–579 (1977).
[Crossref]

Kittelson, D. B.

D. F. Dolan and D. B. Kittelson, “Diesel Exhaust Aerosol Particle Size Distributions—Comparison of Theory and Experiment,” SAE paper 780110, February1978, pp. 1–7.

Kreuzer, L. B.

L. B. Kreuzer, “Ultralow gas concentration infrared absorption spectroscopy,” J. Appl. Phys,  42, 2934–2943 (1971).
[Crossref]

Patel, C. K. N.

C. K. N. Patel and R. J. Kerl, “A new optoacoustic cell with improved performance,” Appl. Phys. Lett. 30, 578–579 (1977).
[Crossref]

Pinnick, R. G.

Roessler, D. M.

F. R. Faxvog and D. M. Roessler, “Carbon aerosol visibility vs particle size distribution,” Appl Opt. 17, 2612–2616 (1978).
[PubMed]

D. M. Roessler and F. R. Faxvog, “Optical properties of acetylene smoke at 0.5145 μ m and 10.6 μ m wavelengths,” J. Opt. Soc. Am. (to be published).

F. R. Faxvog and D. M. Roessler, “Optoacoustic Measurement of Diesel Particulate Emissions,” J. Appl. Phys. (to be published).

Sarofim, A. F.

W. H. Dalzell and A. F. Sarofim, “Optical Constants of Soot and Their Application to Heat-Flux Calculations,” J. Heat Transfer 91, 100–104 (1969).
[Crossref]

Slobodskaya, P. V.

P. V. Slobodskaya and N. F. Tkachenko, “Study of the Relaxation Time for the Vibrational Energy of the NO Molecule by Means of the Spectrophone,” Opt. Spectrosc. 29, 138–142 (1970).

Stoecker, W. F.

W. F. Stoecker, “Smoke Density Measurement,” Mech. Engr. 72, 793–798 (1950).

Terhune, R. W.

Tkachenko, N. F.

P. V. Slobodskaya and N. F. Tkachenko, “Study of the Relaxation Time for the Vibrational Energy of the NO Molecule by Means of the Spectrophone,” Opt. Spectrosc. 29, 138–142 (1970).

Tsu, R.

R. Tsu, H. J. Gonzalez, and I. C. Hernandez, “Observation of Splitting of the E2g Mode and Two-Phonon Spectrum in Graphites,” Solid State Commun. 27, 507–510 (1978).
[Crossref]

Volz, F. E.

F. E. Volz, “Infrared Absorption by Atmospheric Aerosol Substances,” J. Geophys. Res. 77, 1017–1031 (1972).
[Crossref]

Appl Opt. (1)

F. R. Faxvog and D. M. Roessler, “Carbon aerosol visibility vs particle size distribution,” Appl Opt. 17, 2612–2616 (1978).
[PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

C. K. N. Patel and R. J. Kerl, “A new optoacoustic cell with improved performance,” Appl. Phys. Lett. 30, 578–579 (1977).
[Crossref]

Combustion Sci. Technol. (1)

S. C. Graham, “The Refractive Indices of Isolated and Aggregated Soot Particles,” Combustion Sci. Technol. 9, 159–163 (1974).
[Crossref]

J. Appl. Phys (1)

L. B. Kreuzer, “Ultralow gas concentration infrared absorption spectroscopy,” J. Appl. Phys,  42, 2934–2943 (1971).
[Crossref]

J. Geophys. Res. (1)

F. E. Volz, “Infrared Absorption by Atmospheric Aerosol Substances,” J. Geophys. Res. 77, 1017–1031 (1972).
[Crossref]

J. Heat Transfer (1)

W. H. Dalzell and A. F. Sarofim, “Optical Constants of Soot and Their Application to Heat-Flux Calculations,” J. Heat Transfer 91, 100–104 (1969).
[Crossref]

Mech. Engr. (1)

W. F. Stoecker, “Smoke Density Measurement,” Mech. Engr. 72, 793–798 (1950).

Opt. Lett. (1)

Opt. Spectrosc. (1)

P. V. Slobodskaya and N. F. Tkachenko, “Study of the Relaxation Time for the Vibrational Energy of the NO Molecule by Means of the Spectrophone,” Opt. Spectrosc. 29, 138–142 (1970).

Solid State Commun. (1)

R. Tsu, H. J. Gonzalez, and I. C. Hernandez, “Observation of Splitting of the E2g Mode and Two-Phonon Spectrum in Graphites,” Solid State Commun. 27, 507–510 (1978).
[Crossref]

Other (6)

D. M. Roessler and F. R. Faxvog, “Optical properties of acetylene smoke at 0.5145 μ m and 10.6 μ m wavelengths,” J. Opt. Soc. Am. (to be published).

Optoacoustic Spectroscopy and Detection, edited by Y.-H. Pao, (Academic, New York, 1977).

P. J. Groblicki and C. R. Begeman, “Particle Size Variation in Diesel Car Exhaust,” SAE Paper 790421, February1979.

D. F. Dolan and D. B. Kittelson, “Diesel Exhaust Aerosol Particle Size Distributions—Comparison of Theory and Experiment,” SAE paper 780110, February1978, pp. 1–7.

Handbook of Chemistry and Physics, 58th Ed. (CRC, Cleveland, Ohio, 1977) p. D–192.

F. R. Faxvog and D. M. Roessler, “Optoacoustic Measurement of Diesel Particulate Emissions,” J. Appl. Phys. (to be published).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

FIG. 1
FIG. 1

Schematic of optoacoustic measurement apparatus (not to scale).

FIG. 2
FIG. 2

Optoacoustic signal of various concentrations of nitrogen dioxide in air as a function of the extinction coefficient at 0.5145 μm.

FIG. 3
FIG. 3

Optoacoustic signal of acetylene smoke at 0.5145 μm as a function of smoke mass concentration. The data scatter is associated primarily with the mass determination.

FIG. 4
FIG. 4

Theoretical variation of the specific absorption, scattering and total extinction of spheres of density ρ = 1 g cm−3 and refractive index m = 1.75–0.5i at λ = 0.5145 μm as a function of their size distribution. The mean diameters D1 and D3, and the geometric mean standard deviation σ are defined in the text.

FIG. 5
FIG. 5

Theoretical dependence of the fractional absorption, bA/bE, at 0.5145 μm of carbon smokes as a function of smoke particle size distribution. Data are presented for singly-sized particles (σ = 0) and very disperse systems (σ = 0.4). The refractive index of m = 2.0–1.0i is appropriate for a model of small graphite-like spheres; that of m = 1.56–0.47i (Ref. 12) may be appropriate for agglomerated spheres (see text).

FIG. 6
FIG. 6

Calibration curve for the optoacoustic cell at 10.6-μm wavelength, with trichloroethylene vapor as the absorbing sample. The cell responsivity R is 13.6 ± 0.3 mV/(m−1 W).

FIG. 7
FIG. 7

Optoacoustic signal of acetylene smoke at 10.6 μm as a function of smoke particle mass concentration. For the mass concentration range shown, the plot is approximately linear.

FIG. 8
FIG. 8

Mie theory calculation of the specific absorption as a function of wavelength for small spheres of mean particle diameter D1 = 0.04 μm and density ρ = 2 g cm−3. The refractive index m of acetylene smoke is probably less than 2.0–1.0i in the visible region but may be as high as 5.0–4.0i (Ref. 12) at 10 μm. The experimental values of AA found in this work are also shown.

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

S = R ( b A / b E ) [ 1 exp ( b E L ) ] W / L ,
S R A A M C W ,
R = 4 ( γ 1 ) σ M L / π ω V 2 ,
A E = ( 1 / M C ) 0 R E ( D ) m ( D ) d D .
R E = C E / [ ρ ( 4 / 3 ) π ( D / 2 ) 3 ] ,
2 p 1 c 2 2 p t 2 = ( γ 1 ) c 2 H t .
p t = ( γ 1 ) H .
d H = b A I ( z ) A d z ,
H = ( A I / V ) ( b A / b E ) [ 1 exp ( b E L ) ] ,
I ( t ) = I 0 + 4 π I 0 n = 1 sin [ ( 2 n 1 ) ω t ] ( 2 n 1 ) .
H = W V b A b E ( 1 e b E L ) { 1 + 4 π n = 1 sin [ ( 2 n 1 ) ω t ] ( 2 n 1 ) } ,
p ( t ) = ( γ 1 ) W V b A b E ( 1 e b E L ) × ( t 4 ω π n = 1 cos ( 2 n 1 ) ω t ( 2 n 1 ) 2 ) .
S = 4 ( γ 1 ) σ m 2 π ω V b A b E ( 1 e b E L ) W .
S = R ( b A / b E ) ( 1 e b E L ) W / L ,