Abstract

The spectrum of Zr xii was observed with a low-inductance spark and a laser-produced plasma in the region from 70 to 630 Å on the 10.7-m grazing incidence spectrograph at NBS. From the identification of 36 lines, a system of 28 energy levels was determined. The level system (Cu i isoelectronic sequence, 3d10nl) includes the series np (n = 4–6), nd (n = 4–6), nf (n = 4–8), and ng (n = 5–7). The 4f2F term has an anomalously small fine-structure interval (1 ± 3 cm−1). The ionization energy is determined from the ng series (n = 5–7) to be 1 905 500 ± 200 cm−1 (236.25 ± 0.03 eV).

© 1979 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Alexander, M. Even-Zohar, B. S. Fraenkel, and S. Goldsmith, “Classification of transitions in the euv spectra of Y ix–xiii, Zr x–xiv, Nb xi–xv, and Mo xii–xvi,” J. Opt. Soc. Am. 61, 508–514 (1971).
    [CrossRef]
  2. J. Reader and N. Acquista, “4s-4p resonance transitions in highly charged Cu- and Zn-like ions,” Phys. Rev. Lett. 39, 184–187 (1977).
    [CrossRef]
  3. J. Reader and N. Acquista, “Spectrum and energy levels of ten-times ionized yttrium (Y xi),” J. Opt. Soc. Am. 69, 1285–1288 (1979).
    [CrossRef]
  4. J. Reader, G. Luther, and N. Acquista, “Spectrum and energy levels of thirteen-times ionized molybdenum (Mo xiv),” J. Opt. Soc. Am. 69, 144–149 (1979).
    [CrossRef]
  5. U. Feldman, M. Swartz, and L. Cohen, “Vacuum ultraviolet source,” Rev. Sci. Instrum. 38, 1372–1373 (1967).
    [CrossRef]
  6. L. Å. Svensson and J. O. Ekberg, “The titanium vacuum-spark spectrum from 50 to 425 Å,” Ark. Fys. 40, 145–164 (1969).
  7. J. Reader, G. L. Epstein, and J. O. Ekberg, “Spectra of Rb ii, Sr iii, Y iv, Zr v, Nb vi, and Mo vii in the vacuum ultraviolet,” J. Opt. Soc. Am. 62, 273–284 (1972).
    [CrossRef]
  8. J. Reader and N. Acquista, “Spectrum and energy levels of four-times ionized zirconium (Zr v),” J. Opt. Soc. Am. 69, 239–253 (1979).
    [CrossRef]
  9. J. O. Ekberg, J. E. Hansen, and J. Reader, “Analysis of the Spectrum of Five-times Ionized Zirconium (Zr vi),” J. Opt. Soc. Am. 62, 1134–1139 (1972).
    [CrossRef]
  10. J. Reader and N. Acquista, “4s24p4− 4s 4p5transitions in Zr vii, Nb viii, and Mo ix,” J. Opt. Soc. Am. 66, 896–899 (1976).
    [CrossRef]
  11. Optimization of the level values was done with the computer program elcalc, due to L. Radziemski, Jr.
  12. K. T. Cheng and Y.-K. Kim, “Energy Levels, Wavelengths, and Transition Probabilities for Cu-like Ions,” At. Data Nucl. Data Tables 22, 547–563 (1978).
    [CrossRef]
  13. A. E. Livingston, H. G. Berry, L. J. Curtis, and R. M. Schectman, “Energies and lifetimes of excited states in Copper-like Kr viii,” Phys. Rev. A (to be published).
  14. C. Froese, “Numerical Solution of the Hartree-Fock Equations,” Can. J. Phys. 41, 1895–1910 (1963), and C. Froese-Fischer and M. Wilson, “Programs for Atomic Structure Calculations,” Argonne National Laboratory Report No. 7404 (National Technical Information Service, Springfield, Virginia 22161).
    [CrossRef]

1979 (3)

1978 (1)

K. T. Cheng and Y.-K. Kim, “Energy Levels, Wavelengths, and Transition Probabilities for Cu-like Ions,” At. Data Nucl. Data Tables 22, 547–563 (1978).
[CrossRef]

1977 (1)

J. Reader and N. Acquista, “4s-4p resonance transitions in highly charged Cu- and Zn-like ions,” Phys. Rev. Lett. 39, 184–187 (1977).
[CrossRef]

1976 (1)

1972 (2)

1971 (1)

1969 (1)

L. Å. Svensson and J. O. Ekberg, “The titanium vacuum-spark spectrum from 50 to 425 Å,” Ark. Fys. 40, 145–164 (1969).

1967 (1)

U. Feldman, M. Swartz, and L. Cohen, “Vacuum ultraviolet source,” Rev. Sci. Instrum. 38, 1372–1373 (1967).
[CrossRef]

1963 (1)

C. Froese, “Numerical Solution of the Hartree-Fock Equations,” Can. J. Phys. 41, 1895–1910 (1963), and C. Froese-Fischer and M. Wilson, “Programs for Atomic Structure Calculations,” Argonne National Laboratory Report No. 7404 (National Technical Information Service, Springfield, Virginia 22161).
[CrossRef]

Acquista, N.

Alexander, E.

Berry, H. G.

A. E. Livingston, H. G. Berry, L. J. Curtis, and R. M. Schectman, “Energies and lifetimes of excited states in Copper-like Kr viii,” Phys. Rev. A (to be published).

Cheng, K. T.

K. T. Cheng and Y.-K. Kim, “Energy Levels, Wavelengths, and Transition Probabilities for Cu-like Ions,” At. Data Nucl. Data Tables 22, 547–563 (1978).
[CrossRef]

Cohen, L.

U. Feldman, M. Swartz, and L. Cohen, “Vacuum ultraviolet source,” Rev. Sci. Instrum. 38, 1372–1373 (1967).
[CrossRef]

Curtis, L. J.

A. E. Livingston, H. G. Berry, L. J. Curtis, and R. M. Schectman, “Energies and lifetimes of excited states in Copper-like Kr viii,” Phys. Rev. A (to be published).

Ekberg, J. O.

Epstein, G. L.

Even-Zohar, M.

Feldman, U.

U. Feldman, M. Swartz, and L. Cohen, “Vacuum ultraviolet source,” Rev. Sci. Instrum. 38, 1372–1373 (1967).
[CrossRef]

Fraenkel, B. S.

Froese, C.

C. Froese, “Numerical Solution of the Hartree-Fock Equations,” Can. J. Phys. 41, 1895–1910 (1963), and C. Froese-Fischer and M. Wilson, “Programs for Atomic Structure Calculations,” Argonne National Laboratory Report No. 7404 (National Technical Information Service, Springfield, Virginia 22161).
[CrossRef]

Goldsmith, S.

Hansen, J. E.

Kim, Y.-K.

K. T. Cheng and Y.-K. Kim, “Energy Levels, Wavelengths, and Transition Probabilities for Cu-like Ions,” At. Data Nucl. Data Tables 22, 547–563 (1978).
[CrossRef]

Livingston, A. E.

A. E. Livingston, H. G. Berry, L. J. Curtis, and R. M. Schectman, “Energies and lifetimes of excited states in Copper-like Kr viii,” Phys. Rev. A (to be published).

Luther, G.

Reader, J.

Schectman, R. M.

A. E. Livingston, H. G. Berry, L. J. Curtis, and R. M. Schectman, “Energies and lifetimes of excited states in Copper-like Kr viii,” Phys. Rev. A (to be published).

Svensson, L. Å.

L. Å. Svensson and J. O. Ekberg, “The titanium vacuum-spark spectrum from 50 to 425 Å,” Ark. Fys. 40, 145–164 (1969).

Swartz, M.

U. Feldman, M. Swartz, and L. Cohen, “Vacuum ultraviolet source,” Rev. Sci. Instrum. 38, 1372–1373 (1967).
[CrossRef]

Ark. Fys. (1)

L. Å. Svensson and J. O. Ekberg, “The titanium vacuum-spark spectrum from 50 to 425 Å,” Ark. Fys. 40, 145–164 (1969).

At. Data Nucl. Data Tables (1)

K. T. Cheng and Y.-K. Kim, “Energy Levels, Wavelengths, and Transition Probabilities for Cu-like Ions,” At. Data Nucl. Data Tables 22, 547–563 (1978).
[CrossRef]

Can. J. Phys. (1)

C. Froese, “Numerical Solution of the Hartree-Fock Equations,” Can. J. Phys. 41, 1895–1910 (1963), and C. Froese-Fischer and M. Wilson, “Programs for Atomic Structure Calculations,” Argonne National Laboratory Report No. 7404 (National Technical Information Service, Springfield, Virginia 22161).
[CrossRef]

J. Opt. Soc. Am. (7)

Phys. Rev. Lett. (1)

J. Reader and N. Acquista, “4s-4p resonance transitions in highly charged Cu- and Zn-like ions,” Phys. Rev. Lett. 39, 184–187 (1977).
[CrossRef]

Rev. Sci. Instrum. (1)

U. Feldman, M. Swartz, and L. Cohen, “Vacuum ultraviolet source,” Rev. Sci. Instrum. 38, 1372–1373 (1967).
[CrossRef]

Other (2)

Optimization of the level values was done with the computer program elcalc, due to L. Radziemski, Jr.

A. E. Livingston, H. G. Berry, L. J. Curtis, and R. M. Schectman, “Energies and lifetimes of excited states in Copper-like Kr viii,” Phys. Rev. A (to be published).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (1)

FIG. 1
FIG. 1

Grotrian diagram for Zr xii. Wavelengths are in Å. Intensities are indicated in parentheses following the wavelengths. Wavelengths of the 4s-5p and 4s-6p transitions are those calculated from the optimized level values.

Tables (6)

Tables Icon

TABLE I Observed lines of Zr xii.

Tables Icon

TABLE II Energy levels of Zr xii.

Tables Icon

TABLE III Observed and calculated nf2Ffine-structure intervals in Zr xii. Values are in cm−1.

Tables Icon

TABLE IV Wavelengths of selected Zr xii lines as calculated from optimized level values.

Tables Icon

TABLE V Energy parameters in cm 1 for Zr xii.

Tables Icon

TABLE VI Values for the ionization energy of Zr xii determined from various series. The adopted value of the ionization energy is 1905500 ±200 cm−1.