Abstract

Earlier results for coherent attenuation of light by pair-correlated random distributions of dielectric particles of radius a (with separation of closest centers 2b≥2a small compared to wavelength) are generalized to absorbing scatterers with higher refractivity. To facilitate applications, we reduce the total attenuation coefficient (τ) to two terms, one proportional to the absorption cross section of an isolated particle, and one to the scattering cross section times the statistical-mechanics packing correlation function W discussed earlier; each term is also proportional to the same simple function of the first-order coherent phase change. For lossless scatterers, the dependence of W on the volume fraction (W) of particles of radius b accounts for the transparency of correlated distributions at relatively dense packing, as well as for the opacity that arises with looser packing. For lossy scatterers, W (W) determines the relative influence of absorption losses and scattering losses in τ. Even if the scattering losses are the more significant for small W, the absorption losses dominate as W increases; for such cases and moderate refractivity, we show that τ(W) may have a maximum, and determine its value and the corresponding value of W in terms of the cross sections and the form of W.

© 1979 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Propagation in correlated distributions of large-spaced scatterers

Victor Twersky
J. Opt. Soc. Am. 73(3) 313-320 (1983)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (70)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription