Abstract

The spectrum of Mo xiv was observed with a low-inductance spark and a laser-produced plasma in the region from 70 to 630 Å on the10.7-m grazing-incidence spectrograph at NBS. From the identification of 35 lines, a system of 22 energy levels was determined. The level system (Cu i isoelectronic sequence, 3d 10nl) includes the series ns (n = 4–6), np (n = 4–6), nd (n = 4,5), nf(n = 4–6), and ng (n = 5–7). The observed energy levels are compared with Hartree-Fock calculations. The ionization energy is determined from the ng series (n = 5–7) to be 2 440 600 ± 300 cm−3 (302.60 ± 0.04 eV).

© 1979 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Alexander, M. Even-Zohar, B. S. Fraenkel, and S. Goldsmith, “Classification of Transitions in the euv Spectra of Y ix-xiii, Zr x-xiv, Nb xi-xv, and Mo xii-xvi,” J. Opt. Soc. Am. 61, 508–514 (1971).
    [Crossref]
  2. E. Hinnov, L. C. Johnson, E. B. Meservey, and D. L. Dimock, “Electrical Resisitivity of Neon Plasmas in a Tokamak,” Plasma Phys. 14, 755–762 (1972).
    [Crossref]
  3. E. Hinnov, “Highly ionized atoms in tokamak discharges,” Phys. Rev. A 14, 1533–1541 (1976).
    [Crossref]
  4. J. Reader and N. Acquista, “4s-4p Resonance Transitions in Highly Charged Cu- and Zn-like Ions,” Phys. Rev. Lett. 39, 184–187 (1977).
    [Crossref]
  5. L. J. Curtis, A. Lindgård, B. Edlén, I. Martinson, and S. E. Nielsen, “Energy Levels and Transition Probabilities in Mo xiv,” Phys. Scr. 16, 72–76 (1977).
    [Crossref]
  6. U. Feldman, M. Schwartz, and L. Cohen, “Vacuum Ultraviolet Source,” Rev. Sci. Instrum. 38, 1372–1373 (1967).
    [Crossref]
  7. L. Å. Svensson and J. O. Ekberg, “The titanium vacuum-spark spectrum from 50 to 425 Å,” Ark. Fys. 40, 145–164 (1969).
  8. J. Reader, G. L. Epstein, and J. O. Ekberg, “Spectra of Rb ii, Sr iii, Y iv, Zr v, Nb vi, and Mo vii in the Vacuum Ultraviolet,” J. Opt. Soc. Am. 62, 273–284 (1972).
    [Crossref]
  9. J. O. Ekberg, J. E. Hansen, and J. Reader, “Analysis of the Spectrum of Seven-Times-Ionized Molybdenum (Mo viii) and Isoelectronic Comparision of the Spectra Y v–Mo viii,” J. Opt. Soc. Am. 62, 1143–1148 (1972).
    [Crossref]
  10. J. Reader and N. Acquista, “4s2 4p4–4s4p5 transitions in Zr vii, Nb viii, and Mo ix,” J. Opt. Soc. Am. 66, 896–899 (1976).
    [Crossref]
  11. B. Edlén, “Wellenlängen und Termsysteme zu den Atomspektren der Elemente Lithium, Beryllium, Bor, Kohlenstoff, Stickstoff und Sauerstoff,” Nova Acta Regiae Soc. Sci. Ups. (IV) 9, No. 6 (1934).
  12. B. Edlén, “Wavelength Measurements in the Vacuum Ultraviolet,” Rep. Prog. Phys.26, 181–212 (1963).
    [Crossref]
  13. R. L. Kelly and L. J. Palumbo, Atomic and Ionic Emission Lines Below 2000 Anstroms—Hydrogen Through Krypton, Naval Research Laboratory Report 7599 (U.S. GPO, Washington, D.C., 1973).
  14. V. Kaufman and B. Edlén, “Reference Wavelengths from Atomic Spectra in the Range 15 Å to 25 000 Å,” J. Phys. Chem. Ref. Data 3, 825–895 (1974).
    [Crossref]
  15. B. Edlén, “The Oxygen Spectrum below 200 Å and the High-limit Terms of O iv,” Phys. Scr. 11, 366–370 (1975).
    [Crossref]
  16. A. Weiss, “Hartree-Fock Line Strengths for the Lithium, Sodium, and Copper Isoelectronic Sequences,” J. Quant. Spectrosc. Radiat. Transfer 18, 481–490 (1977).
    [Crossref]
  17. C. Froese, “Numerical Solution of the Hartree-Fock Equations,” Can. J. Phys. 41, 1895–1910 (1963);and C. Froese-Fischer and M. Wilson, “Programs for Atomic Structure Calculations,” Argonne National Laboratory Report No. 7404 (National Technical Information Service, Springfield, Va., 22161).
    [Crossref]
  18. É. Ya. Kononov, V. I. Kovalev, A. N. Ryabtsev, and S. S. Churilov, “Laser-plasma spectra of ions of elements from Fe to Br with 15–24 lost electrons, recorded in the 50–150 Å range,” Sov. J. Quantum Electron. 7, 111–112 (1977).
    [Crossref]
  19. A. Weiss, private communication (1977).
  20. Optimization of the level values was done with the computer program ELCALC, communicated to us privately by L. J. Radziemski
  21. S. Younger, private communication (1978).
  22. 1 a.u. = 219 474 cm−1.
  23. W. C. Martin and V. Kaufman, “New Vacuum Ultraviolet Wavelengths and Revised Energy Levels in the Second Spectrum of Zinc (Zn II),” J. Res. Natl. Bur. Std. (U.S.) 74A, 11–22 (1970).
    [Crossref]

1977 (4)

J. Reader and N. Acquista, “4s-4p Resonance Transitions in Highly Charged Cu- and Zn-like Ions,” Phys. Rev. Lett. 39, 184–187 (1977).
[Crossref]

L. J. Curtis, A. Lindgård, B. Edlén, I. Martinson, and S. E. Nielsen, “Energy Levels and Transition Probabilities in Mo xiv,” Phys. Scr. 16, 72–76 (1977).
[Crossref]

A. Weiss, “Hartree-Fock Line Strengths for the Lithium, Sodium, and Copper Isoelectronic Sequences,” J. Quant. Spectrosc. Radiat. Transfer 18, 481–490 (1977).
[Crossref]

É. Ya. Kononov, V. I. Kovalev, A. N. Ryabtsev, and S. S. Churilov, “Laser-plasma spectra of ions of elements from Fe to Br with 15–24 lost electrons, recorded in the 50–150 Å range,” Sov. J. Quantum Electron. 7, 111–112 (1977).
[Crossref]

1976 (2)

1975 (1)

B. Edlén, “The Oxygen Spectrum below 200 Å and the High-limit Terms of O iv,” Phys. Scr. 11, 366–370 (1975).
[Crossref]

1974 (1)

V. Kaufman and B. Edlén, “Reference Wavelengths from Atomic Spectra in the Range 15 Å to 25 000 Å,” J. Phys. Chem. Ref. Data 3, 825–895 (1974).
[Crossref]

1972 (3)

1971 (1)

1970 (1)

W. C. Martin and V. Kaufman, “New Vacuum Ultraviolet Wavelengths and Revised Energy Levels in the Second Spectrum of Zinc (Zn II),” J. Res. Natl. Bur. Std. (U.S.) 74A, 11–22 (1970).
[Crossref]

1969 (1)

L. Å. Svensson and J. O. Ekberg, “The titanium vacuum-spark spectrum from 50 to 425 Å,” Ark. Fys. 40, 145–164 (1969).

1967 (1)

U. Feldman, M. Schwartz, and L. Cohen, “Vacuum Ultraviolet Source,” Rev. Sci. Instrum. 38, 1372–1373 (1967).
[Crossref]

1963 (1)

C. Froese, “Numerical Solution of the Hartree-Fock Equations,” Can. J. Phys. 41, 1895–1910 (1963);and C. Froese-Fischer and M. Wilson, “Programs for Atomic Structure Calculations,” Argonne National Laboratory Report No. 7404 (National Technical Information Service, Springfield, Va., 22161).
[Crossref]

1934 (1)

B. Edlén, “Wellenlängen und Termsysteme zu den Atomspektren der Elemente Lithium, Beryllium, Bor, Kohlenstoff, Stickstoff und Sauerstoff,” Nova Acta Regiae Soc. Sci. Ups. (IV) 9, No. 6 (1934).

Acquista, N.

J. Reader and N. Acquista, “4s-4p Resonance Transitions in Highly Charged Cu- and Zn-like Ions,” Phys. Rev. Lett. 39, 184–187 (1977).
[Crossref]

J. Reader and N. Acquista, “4s2 4p4–4s4p5 transitions in Zr vii, Nb viii, and Mo ix,” J. Opt. Soc. Am. 66, 896–899 (1976).
[Crossref]

Alexander, E.

Churilov, S. S.

É. Ya. Kononov, V. I. Kovalev, A. N. Ryabtsev, and S. S. Churilov, “Laser-plasma spectra of ions of elements from Fe to Br with 15–24 lost electrons, recorded in the 50–150 Å range,” Sov. J. Quantum Electron. 7, 111–112 (1977).
[Crossref]

Cohen, L.

U. Feldman, M. Schwartz, and L. Cohen, “Vacuum Ultraviolet Source,” Rev. Sci. Instrum. 38, 1372–1373 (1967).
[Crossref]

Curtis, L. J.

L. J. Curtis, A. Lindgård, B. Edlén, I. Martinson, and S. E. Nielsen, “Energy Levels and Transition Probabilities in Mo xiv,” Phys. Scr. 16, 72–76 (1977).
[Crossref]

Dimock, D. L.

E. Hinnov, L. C. Johnson, E. B. Meservey, and D. L. Dimock, “Electrical Resisitivity of Neon Plasmas in a Tokamak,” Plasma Phys. 14, 755–762 (1972).
[Crossref]

Edlén, B.

L. J. Curtis, A. Lindgård, B. Edlén, I. Martinson, and S. E. Nielsen, “Energy Levels and Transition Probabilities in Mo xiv,” Phys. Scr. 16, 72–76 (1977).
[Crossref]

B. Edlén, “The Oxygen Spectrum below 200 Å and the High-limit Terms of O iv,” Phys. Scr. 11, 366–370 (1975).
[Crossref]

V. Kaufman and B. Edlén, “Reference Wavelengths from Atomic Spectra in the Range 15 Å to 25 000 Å,” J. Phys. Chem. Ref. Data 3, 825–895 (1974).
[Crossref]

B. Edlén, “Wellenlängen und Termsysteme zu den Atomspektren der Elemente Lithium, Beryllium, Bor, Kohlenstoff, Stickstoff und Sauerstoff,” Nova Acta Regiae Soc. Sci. Ups. (IV) 9, No. 6 (1934).

B. Edlén, “Wavelength Measurements in the Vacuum Ultraviolet,” Rep. Prog. Phys.26, 181–212 (1963).
[Crossref]

Ekberg, J. O.

Epstein, G. L.

Even-Zohar, M.

Feldman, U.

U. Feldman, M. Schwartz, and L. Cohen, “Vacuum Ultraviolet Source,” Rev. Sci. Instrum. 38, 1372–1373 (1967).
[Crossref]

Fraenkel, B. S.

Froese, C.

C. Froese, “Numerical Solution of the Hartree-Fock Equations,” Can. J. Phys. 41, 1895–1910 (1963);and C. Froese-Fischer and M. Wilson, “Programs for Atomic Structure Calculations,” Argonne National Laboratory Report No. 7404 (National Technical Information Service, Springfield, Va., 22161).
[Crossref]

Goldsmith, S.

Hansen, J. E.

Hinnov, E.

E. Hinnov, “Highly ionized atoms in tokamak discharges,” Phys. Rev. A 14, 1533–1541 (1976).
[Crossref]

E. Hinnov, L. C. Johnson, E. B. Meservey, and D. L. Dimock, “Electrical Resisitivity of Neon Plasmas in a Tokamak,” Plasma Phys. 14, 755–762 (1972).
[Crossref]

Johnson, L. C.

E. Hinnov, L. C. Johnson, E. B. Meservey, and D. L. Dimock, “Electrical Resisitivity of Neon Plasmas in a Tokamak,” Plasma Phys. 14, 755–762 (1972).
[Crossref]

Kaufman, V.

V. Kaufman and B. Edlén, “Reference Wavelengths from Atomic Spectra in the Range 15 Å to 25 000 Å,” J. Phys. Chem. Ref. Data 3, 825–895 (1974).
[Crossref]

W. C. Martin and V. Kaufman, “New Vacuum Ultraviolet Wavelengths and Revised Energy Levels in the Second Spectrum of Zinc (Zn II),” J. Res. Natl. Bur. Std. (U.S.) 74A, 11–22 (1970).
[Crossref]

Kelly, R. L.

R. L. Kelly and L. J. Palumbo, Atomic and Ionic Emission Lines Below 2000 Anstroms—Hydrogen Through Krypton, Naval Research Laboratory Report 7599 (U.S. GPO, Washington, D.C., 1973).

Kononov, É. Ya.

É. Ya. Kononov, V. I. Kovalev, A. N. Ryabtsev, and S. S. Churilov, “Laser-plasma spectra of ions of elements from Fe to Br with 15–24 lost electrons, recorded in the 50–150 Å range,” Sov. J. Quantum Electron. 7, 111–112 (1977).
[Crossref]

Kovalev, V. I.

É. Ya. Kononov, V. I. Kovalev, A. N. Ryabtsev, and S. S. Churilov, “Laser-plasma spectra of ions of elements from Fe to Br with 15–24 lost electrons, recorded in the 50–150 Å range,” Sov. J. Quantum Electron. 7, 111–112 (1977).
[Crossref]

Lindgård, A.

L. J. Curtis, A. Lindgård, B. Edlén, I. Martinson, and S. E. Nielsen, “Energy Levels and Transition Probabilities in Mo xiv,” Phys. Scr. 16, 72–76 (1977).
[Crossref]

Martin, W. C.

W. C. Martin and V. Kaufman, “New Vacuum Ultraviolet Wavelengths and Revised Energy Levels in the Second Spectrum of Zinc (Zn II),” J. Res. Natl. Bur. Std. (U.S.) 74A, 11–22 (1970).
[Crossref]

Martinson, I.

L. J. Curtis, A. Lindgård, B. Edlén, I. Martinson, and S. E. Nielsen, “Energy Levels and Transition Probabilities in Mo xiv,” Phys. Scr. 16, 72–76 (1977).
[Crossref]

Meservey, E. B.

E. Hinnov, L. C. Johnson, E. B. Meservey, and D. L. Dimock, “Electrical Resisitivity of Neon Plasmas in a Tokamak,” Plasma Phys. 14, 755–762 (1972).
[Crossref]

Nielsen, S. E.

L. J. Curtis, A. Lindgård, B. Edlén, I. Martinson, and S. E. Nielsen, “Energy Levels and Transition Probabilities in Mo xiv,” Phys. Scr. 16, 72–76 (1977).
[Crossref]

Palumbo, L. J.

R. L. Kelly and L. J. Palumbo, Atomic and Ionic Emission Lines Below 2000 Anstroms—Hydrogen Through Krypton, Naval Research Laboratory Report 7599 (U.S. GPO, Washington, D.C., 1973).

Radziemski, L. J.

Optimization of the level values was done with the computer program ELCALC, communicated to us privately by L. J. Radziemski

Reader, J.

Ryabtsev, A. N.

É. Ya. Kononov, V. I. Kovalev, A. N. Ryabtsev, and S. S. Churilov, “Laser-plasma spectra of ions of elements from Fe to Br with 15–24 lost electrons, recorded in the 50–150 Å range,” Sov. J. Quantum Electron. 7, 111–112 (1977).
[Crossref]

Schwartz, M.

U. Feldman, M. Schwartz, and L. Cohen, “Vacuum Ultraviolet Source,” Rev. Sci. Instrum. 38, 1372–1373 (1967).
[Crossref]

Svensson, L. Å.

L. Å. Svensson and J. O. Ekberg, “The titanium vacuum-spark spectrum from 50 to 425 Å,” Ark. Fys. 40, 145–164 (1969).

Weiss, A.

A. Weiss, “Hartree-Fock Line Strengths for the Lithium, Sodium, and Copper Isoelectronic Sequences,” J. Quant. Spectrosc. Radiat. Transfer 18, 481–490 (1977).
[Crossref]

A. Weiss, private communication (1977).

Younger, S.

S. Younger, private communication (1978).

Ark. Fys. (1)

L. Å. Svensson and J. O. Ekberg, “The titanium vacuum-spark spectrum from 50 to 425 Å,” Ark. Fys. 40, 145–164 (1969).

Can. J. Phys. (1)

C. Froese, “Numerical Solution of the Hartree-Fock Equations,” Can. J. Phys. 41, 1895–1910 (1963);and C. Froese-Fischer and M. Wilson, “Programs for Atomic Structure Calculations,” Argonne National Laboratory Report No. 7404 (National Technical Information Service, Springfield, Va., 22161).
[Crossref]

J. Opt. Soc. Am. (4)

J. Phys. Chem. Ref. Data (1)

V. Kaufman and B. Edlén, “Reference Wavelengths from Atomic Spectra in the Range 15 Å to 25 000 Å,” J. Phys. Chem. Ref. Data 3, 825–895 (1974).
[Crossref]

J. Quant. Spectrosc. Radiat. Transfer (1)

A. Weiss, “Hartree-Fock Line Strengths for the Lithium, Sodium, and Copper Isoelectronic Sequences,” J. Quant. Spectrosc. Radiat. Transfer 18, 481–490 (1977).
[Crossref]

J. Res. Natl. Bur. Std. (U.S.) (1)

W. C. Martin and V. Kaufman, “New Vacuum Ultraviolet Wavelengths and Revised Energy Levels in the Second Spectrum of Zinc (Zn II),” J. Res. Natl. Bur. Std. (U.S.) 74A, 11–22 (1970).
[Crossref]

Nova Acta Regiae Soc. Sci. Ups. (IV) (1)

B. Edlén, “Wellenlängen und Termsysteme zu den Atomspektren der Elemente Lithium, Beryllium, Bor, Kohlenstoff, Stickstoff und Sauerstoff,” Nova Acta Regiae Soc. Sci. Ups. (IV) 9, No. 6 (1934).

Phys. Rev. A (1)

E. Hinnov, “Highly ionized atoms in tokamak discharges,” Phys. Rev. A 14, 1533–1541 (1976).
[Crossref]

Phys. Rev. Lett. (1)

J. Reader and N. Acquista, “4s-4p Resonance Transitions in Highly Charged Cu- and Zn-like Ions,” Phys. Rev. Lett. 39, 184–187 (1977).
[Crossref]

Phys. Scr. (2)

L. J. Curtis, A. Lindgård, B. Edlén, I. Martinson, and S. E. Nielsen, “Energy Levels and Transition Probabilities in Mo xiv,” Phys. Scr. 16, 72–76 (1977).
[Crossref]

B. Edlén, “The Oxygen Spectrum below 200 Å and the High-limit Terms of O iv,” Phys. Scr. 11, 366–370 (1975).
[Crossref]

Plasma Phys. (1)

E. Hinnov, L. C. Johnson, E. B. Meservey, and D. L. Dimock, “Electrical Resisitivity of Neon Plasmas in a Tokamak,” Plasma Phys. 14, 755–762 (1972).
[Crossref]

Rev. Sci. Instrum. (1)

U. Feldman, M. Schwartz, and L. Cohen, “Vacuum Ultraviolet Source,” Rev. Sci. Instrum. 38, 1372–1373 (1967).
[Crossref]

Sov. J. Quantum Electron. (1)

É. Ya. Kononov, V. I. Kovalev, A. N. Ryabtsev, and S. S. Churilov, “Laser-plasma spectra of ions of elements from Fe to Br with 15–24 lost electrons, recorded in the 50–150 Å range,” Sov. J. Quantum Electron. 7, 111–112 (1977).
[Crossref]

Other (6)

A. Weiss, private communication (1977).

Optimization of the level values was done with the computer program ELCALC, communicated to us privately by L. J. Radziemski

S. Younger, private communication (1978).

1 a.u. = 219 474 cm−1.

B. Edlén, “Wavelength Measurements in the Vacuum Ultraviolet,” Rep. Prog. Phys.26, 181–212 (1963).
[Crossref]

R. L. Kelly and L. J. Palumbo, Atomic and Ionic Emission Lines Below 2000 Anstroms—Hydrogen Through Krypton, Naval Research Laboratory Report 7599 (U.S. GPO, Washington, D.C., 1973).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

FIG. 1
FIG. 1

Experimental arrangement for laser-produced plasma. The laser beam is about 2 cm in diameter. The target is inclined toward the spectrograph at an angle of about 5°.

FIG. 2
FIG. 2

Grotrian diagram for Mo xiv. Wavelengths are in Å. Intensities are indicated in parentheses following the wavelengths. Wavelengths for the 4s-5p, 4s-6p, and 4p-5d transitions are those calculated from the optimized level values.

FIG. 3
FIG. 3

Spectrum of Mo at 180 Å. (a) Laser-produced plasma; indicated lines are due to Mo xiv. The 4p-5d lines of Mo xiv are in the 2nd order. (b) Low-inductance spark; indicated lines are due to Mo viii.

FIG. 4
FIG. 4

Spectrum of Mo at 260 Å. (a) Laser-produced plasma; indicated lines are due to Mo xiv. The weak line on the long wavelength side of 264.043 Å is the 4d 2D5/2 – 4f 2F5/2 transition. (b) Low-inductance spark; lines due to Mo xiv as well as low stages of ionization are indicated. The line at 257.597 Å is due to Mo viii.

Tables (5)

Tables Icon

TABLE I Observed lines of Mo xiv. Symbols: h: hazy; p: perturbed by close line; u: unresolved from close line

Tables Icon

TABLE II Energy levels of Mo xiv

Tables Icon

TABLE III Wavelengths of selected Mo xiv lines as calculated from optimized level values

Tables Icon

TABLE IV Energy parameters in cm−1 for Mo xiv

Tables Icon

TABLE V Series limits in Mo xiv. The adopted value for the ionization energy is 2 440 600 ± 300 cm−1

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

n n * = a + b ( n * ) 2 .