Abstract

A direct comparison has been made between the intensity of dispersed radiation from a laboratory Hopfield helium continuum and that obtained from the electron storage ring called Tantalus 1. The relative advantages and disadvantages of the respective light sources are described. Extrapolation of this information to other (present and future) electron storage-ring sources is discussed.

© 1978 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. For normal incidence region see: D. Reinke, R. Kraessig, and H. Baumgartl, Z. Naturforsch. 28a, 1021 (1973); W. L. Stebbings and J. W. Taylor, Int. J. Mass Spectrom. Ion Phys. 9, 471 (1972); G. R. Parr and J. W. Taylor, Rev. Sci. Instrum. 44, 1578 (1973). For grazing incidence region, see: V. Schmidt, N. Sendner, H. Kuntzemuller, P. Dhez, F. Wuilleumier, and E. Kallne, Phys. Rev. A 13, 1748 (1976).
    [Crossref]
  2. J. Schwinger, Phys. Rev. 75, 1912 (1949).
    [Crossref]
  3. See, for example, R. P. Godwin, Springer Tracts Mod. Phys. 51, 1 (1969); K. Codling, Rep. Prog. Phys. 36, 541 (1973).
    [Crossref]
  4. W. Gudat (private communication).
  5. V. Saile, P. Gurtler, E. E. Koch, A. Kozevnikov, M. Skibowski, and W. Steinman, Appl. Opt. 15, 2559 (1976). Note: According to one of the above authors (V. Saile) Fig. 4 of their publication, showing the light intensity available at the exit slit of the monochromator at the DORIS synchrotron radiation facility is slightly misleading. The peak intensity they actually observed was 6 × 109 photons/s with 0.3 Å band pass (100 μ m slits) but the intensity would only increase linearly when going to 300 μ m slits because the image of the synchrotron source is only 100 μ m wide at the entrance slit.
    [Crossref] [PubMed]

1976 (1)

1973 (1)

For normal incidence region see: D. Reinke, R. Kraessig, and H. Baumgartl, Z. Naturforsch. 28a, 1021 (1973); W. L. Stebbings and J. W. Taylor, Int. J. Mass Spectrom. Ion Phys. 9, 471 (1972); G. R. Parr and J. W. Taylor, Rev. Sci. Instrum. 44, 1578 (1973). For grazing incidence region, see: V. Schmidt, N. Sendner, H. Kuntzemuller, P. Dhez, F. Wuilleumier, and E. Kallne, Phys. Rev. A 13, 1748 (1976).
[Crossref]

1969 (1)

See, for example, R. P. Godwin, Springer Tracts Mod. Phys. 51, 1 (1969); K. Codling, Rep. Prog. Phys. 36, 541 (1973).
[Crossref]

1949 (1)

J. Schwinger, Phys. Rev. 75, 1912 (1949).
[Crossref]

Baumgartl, H.

For normal incidence region see: D. Reinke, R. Kraessig, and H. Baumgartl, Z. Naturforsch. 28a, 1021 (1973); W. L. Stebbings and J. W. Taylor, Int. J. Mass Spectrom. Ion Phys. 9, 471 (1972); G. R. Parr and J. W. Taylor, Rev. Sci. Instrum. 44, 1578 (1973). For grazing incidence region, see: V. Schmidt, N. Sendner, H. Kuntzemuller, P. Dhez, F. Wuilleumier, and E. Kallne, Phys. Rev. A 13, 1748 (1976).
[Crossref]

Godwin, R. P.

See, for example, R. P. Godwin, Springer Tracts Mod. Phys. 51, 1 (1969); K. Codling, Rep. Prog. Phys. 36, 541 (1973).
[Crossref]

Gudat, W.

W. Gudat (private communication).

Gurtler, P.

Koch, E. E.

Kozevnikov, A.

Kraessig, R.

For normal incidence region see: D. Reinke, R. Kraessig, and H. Baumgartl, Z. Naturforsch. 28a, 1021 (1973); W. L. Stebbings and J. W. Taylor, Int. J. Mass Spectrom. Ion Phys. 9, 471 (1972); G. R. Parr and J. W. Taylor, Rev. Sci. Instrum. 44, 1578 (1973). For grazing incidence region, see: V. Schmidt, N. Sendner, H. Kuntzemuller, P. Dhez, F. Wuilleumier, and E. Kallne, Phys. Rev. A 13, 1748 (1976).
[Crossref]

Reinke, D.

For normal incidence region see: D. Reinke, R. Kraessig, and H. Baumgartl, Z. Naturforsch. 28a, 1021 (1973); W. L. Stebbings and J. W. Taylor, Int. J. Mass Spectrom. Ion Phys. 9, 471 (1972); G. R. Parr and J. W. Taylor, Rev. Sci. Instrum. 44, 1578 (1973). For grazing incidence region, see: V. Schmidt, N. Sendner, H. Kuntzemuller, P. Dhez, F. Wuilleumier, and E. Kallne, Phys. Rev. A 13, 1748 (1976).
[Crossref]

Saile, V.

Schwinger, J.

J. Schwinger, Phys. Rev. 75, 1912 (1949).
[Crossref]

Skibowski, M.

Steinman, W.

Appl. Opt. (1)

Phys. Rev. (1)

J. Schwinger, Phys. Rev. 75, 1912 (1949).
[Crossref]

Springer Tracts Mod. Phys. (1)

See, for example, R. P. Godwin, Springer Tracts Mod. Phys. 51, 1 (1969); K. Codling, Rep. Prog. Phys. 36, 541 (1973).
[Crossref]

Z. Naturforsch. (1)

For normal incidence region see: D. Reinke, R. Kraessig, and H. Baumgartl, Z. Naturforsch. 28a, 1021 (1973); W. L. Stebbings and J. W. Taylor, Int. J. Mass Spectrom. Ion Phys. 9, 471 (1972); G. R. Parr and J. W. Taylor, Rev. Sci. Instrum. 44, 1578 (1973). For grazing incidence region, see: V. Schmidt, N. Sendner, H. Kuntzemuller, P. Dhez, F. Wuilleumier, and E. Kallne, Phys. Rev. A 13, 1748 (1976).
[Crossref]

Other (1)

W. Gudat (private communication).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

FIG. 1
FIG. 1

Schematic diagram of apparatus used with synchrotron and pulsed-discharge light sources. e, electron orbit; ○, bending magnet, origin of synchrotron radiation; FM 1, focusing mirror; S1, entrance slit of 3 m monochromator; G, diffraction grating; S2, exit slit; FM 2, focusing mirror; R, photon-gas interaction zone; QMF, quadrupole mass filter; D1, ion detector; D2, photon detector; HV, high-voltage pulsed power supply; X, purified rare-gas source.

FIG. 2
FIG. 2

Comparison of spectral intensities: Curve (1). Calculated light output of Stoughton storage ring at 240 MeV and 30 mA electron current, with 50 mrad horizontal acceptance and total vertical acceptance. The calculation is based on Fig. 6 of the Synchrotron Radiation Facility Users Handbook, Dec. 18, 1970. Curve (2). Measured light output of Stoughton storage ring after passing through mirrors and grating described in Fig. 1. Conditions: Orbiting electron energy, 230 MeV; electron current, 30 mA; monochromator slits both 100 μm. Grating and detector used are described in text. Curve (3). Measured light output of DORIS storage ring after passing through 3 m monochromator slits, both 100 μm; grating, 1200 lines/mm, Al + MgF2 coated, blazed at 1350 Å, with 50 × 30-mm-ruled area; sodium-salicylate-coated multiplier calibrated at 600 and 800 Å by a double ionization chamber.5 Curve (4). Measured light output from helium continuum lamp (discussed in text). The physical arrangement was identical to that used in obtaining Curve 2, and described in Fig. 1. Curve (5). Same as Curve 4, except that the argon continuum was generated.

FIG. 3
FIG. 3

Calculated spectral outputs of some active storage-ring sources, and one synchrotron, at conditions not necessarily realized yet (see text).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

6.8 × 10 9 photons s - Å - mA - mrad .