Abstract

Globular metal films composed of particles with sizes of the order of the wavelength of visible light can have interesting solar-selective properties when deposited on a metallic surface which provides the required high infrared reflectance. The geometrical nature of the absorption mechanism in these films makes their operation substantially independent of the materials used, and allows wide control of the cut-on wavelength. It is shown here that all-metal films can have poor broadband selective properties; however, the addition of very thin dielectric layers between the globules and the substrate permits surface-wave resonances, giving broadband absorption and a higher solar selectivity. The behavior of these films is found to agree, in various regions, with models based on interference layers, an equivalent circuit, and surface-wave propagation.

© 1978 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. B. Meinel and M. P. Meinel, Phys. Today, Feb.1972, p. 44.
    [Crossref]
  2. J. C. C. Fan, F. J. Bachner, and R. A. Murphy, Appl. Phys. Lett. 28, 440 (1976).
    [Crossref]
  3. D. A. Williams, T. A. Lappin, and J. A. Duffie, Trans. ASME 85A, 213 (1963).
  4. E. A. Allen, G. D. Scott, K. T. Thompson, and F. Veas, J. Opt. Soc. Am. 64, 1190 (1974).
    [Crossref]
  5. C. M. Horwitz, , presented at I. S. E. S. Conference, Los Angeles, Calif., July 1975; C. M. Horwitz, J. A. Beunen, and R. C. McPhedran, “Interference and Diffraction in Globular Metal Films,” J. Opt. Soc. Am. 68, 1023–1031 (1978).
    [Crossref]
  6. R. E. Hetrick and J. Lambe, Phys. Rev. B 11, 1273 (1975).
    [Crossref]
  7. H. E. Bennett, J. Opt. Soc. Am. 53, 1389 (1963).
    [Crossref]
  8. J. J. Cuomo, J. F. Ziegler, and J. M. Woodall, Appl. Phys. Lett. 26, 557 (1975).
    [Crossref]
  9. J. J. Cuomo, J. M. Woodall, and T. H. Di Stefano, in Proceedings of the American Electroplaters Society Symposium, Atlanta, Ga., 1976, p. 133 (American Electroplaters’ Society, Inc., Winter Park, Fla., 1976).
  10. D. P. Grimmer, K. C. Herr, and W. J. McCreary, in Ref. 9, p. 79.
  11. H. P. Singh and L. E. Murr, Philos. Mag. 26, 649 (1972).
    [Crossref]
  12. S. Ramo, J. R. Whinnery, and T. van Duzer, Fields and Waves in Communication Electronics (Wiley, New York, 1965).
  13. V. Twersky, I.R.E. Trans. AP-5, 81 (1957).
  14. M. Kerker, The Scattering of Light (Academic, New York, 1969).
  15. N. Marcuvitz, Waveguide Handbook, M.I.T. Radiation Laboratory Series (McGraw-Hill, New York, 1951).
  16. American Institute of Physics Handbook, edited by D. E. Gray (McGraw-Hill, New York, 1963), p. 5–15.
  17. D. Maystre, Opt. Commun. 8, 216 (1973).
    [Crossref]
  18. R. C. McPhedran (private communication, 1976).

1976 (1)

J. C. C. Fan, F. J. Bachner, and R. A. Murphy, Appl. Phys. Lett. 28, 440 (1976).
[Crossref]

1975 (2)

R. E. Hetrick and J. Lambe, Phys. Rev. B 11, 1273 (1975).
[Crossref]

J. J. Cuomo, J. F. Ziegler, and J. M. Woodall, Appl. Phys. Lett. 26, 557 (1975).
[Crossref]

1974 (1)

1973 (1)

D. Maystre, Opt. Commun. 8, 216 (1973).
[Crossref]

1972 (2)

A. B. Meinel and M. P. Meinel, Phys. Today, Feb.1972, p. 44.
[Crossref]

H. P. Singh and L. E. Murr, Philos. Mag. 26, 649 (1972).
[Crossref]

1963 (2)

H. E. Bennett, J. Opt. Soc. Am. 53, 1389 (1963).
[Crossref]

D. A. Williams, T. A. Lappin, and J. A. Duffie, Trans. ASME 85A, 213 (1963).

1957 (1)

V. Twersky, I.R.E. Trans. AP-5, 81 (1957).

Allen, E. A.

Bachner, F. J.

J. C. C. Fan, F. J. Bachner, and R. A. Murphy, Appl. Phys. Lett. 28, 440 (1976).
[Crossref]

Bennett, H. E.

Cuomo, J. J.

J. J. Cuomo, J. F. Ziegler, and J. M. Woodall, Appl. Phys. Lett. 26, 557 (1975).
[Crossref]

J. J. Cuomo, J. M. Woodall, and T. H. Di Stefano, in Proceedings of the American Electroplaters Society Symposium, Atlanta, Ga., 1976, p. 133 (American Electroplaters’ Society, Inc., Winter Park, Fla., 1976).

Di Stefano, T. H.

J. J. Cuomo, J. M. Woodall, and T. H. Di Stefano, in Proceedings of the American Electroplaters Society Symposium, Atlanta, Ga., 1976, p. 133 (American Electroplaters’ Society, Inc., Winter Park, Fla., 1976).

Duffie, J. A.

D. A. Williams, T. A. Lappin, and J. A. Duffie, Trans. ASME 85A, 213 (1963).

Fan, J. C. C.

J. C. C. Fan, F. J. Bachner, and R. A. Murphy, Appl. Phys. Lett. 28, 440 (1976).
[Crossref]

Grimmer, D. P.

D. P. Grimmer, K. C. Herr, and W. J. McCreary, in Ref. 9, p. 79.

Herr, K. C.

D. P. Grimmer, K. C. Herr, and W. J. McCreary, in Ref. 9, p. 79.

Hetrick, R. E.

R. E. Hetrick and J. Lambe, Phys. Rev. B 11, 1273 (1975).
[Crossref]

Horwitz, C. M.

C. M. Horwitz, , presented at I. S. E. S. Conference, Los Angeles, Calif., July 1975; C. M. Horwitz, J. A. Beunen, and R. C. McPhedran, “Interference and Diffraction in Globular Metal Films,” J. Opt. Soc. Am. 68, 1023–1031 (1978).
[Crossref]

Kerker, M.

M. Kerker, The Scattering of Light (Academic, New York, 1969).

Lambe, J.

R. E. Hetrick and J. Lambe, Phys. Rev. B 11, 1273 (1975).
[Crossref]

Lappin, T. A.

D. A. Williams, T. A. Lappin, and J. A. Duffie, Trans. ASME 85A, 213 (1963).

Marcuvitz, N.

N. Marcuvitz, Waveguide Handbook, M.I.T. Radiation Laboratory Series (McGraw-Hill, New York, 1951).

Maystre, D.

D. Maystre, Opt. Commun. 8, 216 (1973).
[Crossref]

McCreary, W. J.

D. P. Grimmer, K. C. Herr, and W. J. McCreary, in Ref. 9, p. 79.

McPhedran, R. C.

R. C. McPhedran (private communication, 1976).

Meinel, A. B.

A. B. Meinel and M. P. Meinel, Phys. Today, Feb.1972, p. 44.
[Crossref]

Meinel, M. P.

A. B. Meinel and M. P. Meinel, Phys. Today, Feb.1972, p. 44.
[Crossref]

Murphy, R. A.

J. C. C. Fan, F. J. Bachner, and R. A. Murphy, Appl. Phys. Lett. 28, 440 (1976).
[Crossref]

Murr, L. E.

H. P. Singh and L. E. Murr, Philos. Mag. 26, 649 (1972).
[Crossref]

Ramo, S.

S. Ramo, J. R. Whinnery, and T. van Duzer, Fields and Waves in Communication Electronics (Wiley, New York, 1965).

Scott, G. D.

Singh, H. P.

H. P. Singh and L. E. Murr, Philos. Mag. 26, 649 (1972).
[Crossref]

Thompson, K. T.

Twersky, V.

V. Twersky, I.R.E. Trans. AP-5, 81 (1957).

van Duzer, T.

S. Ramo, J. R. Whinnery, and T. van Duzer, Fields and Waves in Communication Electronics (Wiley, New York, 1965).

Veas, F.

Whinnery, J. R.

S. Ramo, J. R. Whinnery, and T. van Duzer, Fields and Waves in Communication Electronics (Wiley, New York, 1965).

Williams, D. A.

D. A. Williams, T. A. Lappin, and J. A. Duffie, Trans. ASME 85A, 213 (1963).

Woodall, J. M.

J. J. Cuomo, J. F. Ziegler, and J. M. Woodall, Appl. Phys. Lett. 26, 557 (1975).
[Crossref]

J. J. Cuomo, J. M. Woodall, and T. H. Di Stefano, in Proceedings of the American Electroplaters Society Symposium, Atlanta, Ga., 1976, p. 133 (American Electroplaters’ Society, Inc., Winter Park, Fla., 1976).

Ziegler, J. F.

J. J. Cuomo, J. F. Ziegler, and J. M. Woodall, Appl. Phys. Lett. 26, 557 (1975).
[Crossref]

Appl. Phys. Lett. (2)

J. C. C. Fan, F. J. Bachner, and R. A. Murphy, Appl. Phys. Lett. 28, 440 (1976).
[Crossref]

J. J. Cuomo, J. F. Ziegler, and J. M. Woodall, Appl. Phys. Lett. 26, 557 (1975).
[Crossref]

I.R.E. Trans. (1)

V. Twersky, I.R.E. Trans. AP-5, 81 (1957).

J. Opt. Soc. Am. (2)

Opt. Commun. (1)

D. Maystre, Opt. Commun. 8, 216 (1973).
[Crossref]

Philos. Mag. (1)

H. P. Singh and L. E. Murr, Philos. Mag. 26, 649 (1972).
[Crossref]

Phys. Rev. B (1)

R. E. Hetrick and J. Lambe, Phys. Rev. B 11, 1273 (1975).
[Crossref]

Phys. Today (1)

A. B. Meinel and M. P. Meinel, Phys. Today, Feb.1972, p. 44.
[Crossref]

Trans. ASME (1)

D. A. Williams, T. A. Lappin, and J. A. Duffie, Trans. ASME 85A, 213 (1963).

Other (8)

C. M. Horwitz, , presented at I. S. E. S. Conference, Los Angeles, Calif., July 1975; C. M. Horwitz, J. A. Beunen, and R. C. McPhedran, “Interference and Diffraction in Globular Metal Films,” J. Opt. Soc. Am. 68, 1023–1031 (1978).
[Crossref]

J. J. Cuomo, J. M. Woodall, and T. H. Di Stefano, in Proceedings of the American Electroplaters Society Symposium, Atlanta, Ga., 1976, p. 133 (American Electroplaters’ Society, Inc., Winter Park, Fla., 1976).

D. P. Grimmer, K. C. Herr, and W. J. McCreary, in Ref. 9, p. 79.

S. Ramo, J. R. Whinnery, and T. van Duzer, Fields and Waves in Communication Electronics (Wiley, New York, 1965).

R. C. McPhedran (private communication, 1976).

M. Kerker, The Scattering of Light (Academic, New York, 1969).

N. Marcuvitz, Waveguide Handbook, M.I.T. Radiation Laboratory Series (McGraw-Hill, New York, 1951).

American Institute of Physics Handbook, edited by D. E. Gray (McGraw-Hill, New York, 1963), p. 5–15.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

FIG. 1
FIG. 1

Scanning electron micrographs of a globular metal film (70 nm deposited Sn mass thickness). (a) As deposited; (b) overcoated with 100 nm of Au, with planetary motion.

FIG. 2
FIG. 2

(a) Calculated reflectance of a 70 nm mass thickness Sn film (with an effective thickness of 160 nm), on a Ta substrate and (2) 20 nm of Al2O3 on a Ta substrate. (b) Experimental total reflectances of films on Ta substrates: (1) 50 nm mass thickness of Sn, (2) 100 nm Sn, (3) 100 nm Sn on 10 nm Al2O3. (c) Calculated and experimental total reflectances of 70 nm mass thickness Sn films on Al substrates: (1) calculated, (2) calculated with a 20 nm Al2O3 spacer layer, (3) measured with a 20 nm Al2O3 spacer layer.

FIG. 3
FIG. 3

Measured total and scattered reflected light from Sn films on various substrates. The solid lines are scattered; dashed lines are the total reflectance. (a) Ta substrate, 100 nm mass thickness Sn film: (1) without a spacer layer, (2) with a 10 nm Al2O3 spacer layer. (b) 70 nm mass thickness Sn film with a 20 nm Al2O3 spacer layer, on (1) a glass substrate, (2) an Al substrate.

FIG. 4
FIG. 4

Power-law plot of the long-wavelength reflectance loss of globular films vs wavelength (20 nm Al2O3 spacer layer, Al substrates). Deposited Sn mass thicknesses of (1) 236 nm, (2) 100 nm, (3) 20 nm; (4) reference line corresponding to λ−3 law.

FIG. 5
FIG. 5

Effect of perfect vs Al substrates at short wavelength, for a thin (20 nm deposited Sn) globular film, on a 20 nm Al2O3 spacer layer. (1) Reflectance (calculated) for perfect substrate, (2) for Al substrate, (3) total measured reflectance on Al substrate.

FIG. 6
FIG. 6

Measured total (a) and specular (b) reflectance vs wavelength of 70 nm deposited Sn films on Al substrates with Al2O3 spacer layer thicknesses of (1) 5 nm, (2) 10 nm, (3) 30 nm.

FIG. 7
FIG. 7

Power-plot of reflectance loss vs wavelength of a 70 nm deposited Sn globular film, overcoated with Au. (1) Planetary substrate motion, (2) stationary substrate.

FIG. 8
FIG. 8

(a) Cross-sectional view of a globular film showing surface wave ray path around globule, with a perfectly reflecting substrate and a spacer layer thickness of “a.” N1 is the refractive index experienced by a horizontally traveling, vertically polarized wave. (b) Formally equivalent ray path for surface wave used in calculations of surface-wave reflection coefficient.

FIG. 9
FIG. 9

Theoretical transmission-line propagation constants vs plate separation “a,” with dielectric filler refractive index as parameter. λ = 1.3 μm, and conducting plate index N = (2.7 − 8.1 i), corresponding to Sn. Other plate assumed to be perfectly conducting.

FIG. 10
FIG. 10

Calculated reflectance vs wavelength using the surface-wave interference scattering model, of incoherent globules of radius r = 0.2 μm, on a perfectly reflecting substrate. The upper refractive index N2 = (2.45 − 0.2 i), and the surface wave N1 = (1) (3 − 0.8 i). i.e., a ÷ 5 nm, (2) (2 − 0.1 i), i.e., a ÷ 50 nm.

FIG. 11
FIG. 11

(a) Idealized model of an overcoated globular film (repeated indefinitely into the page). h is the globule height, d the globule diameter, and t the distance between globules. (b) Equivalent circuit used to describe the above structure at long wavelengths. Symbols are defined in the text.

FIG. 12
FIG. 12

Calculated equivalent-circuit reflectance loss vs wavelength on a power law plot, for d = 0.2, h = 0.2, t = 0.05 μm, and a structure with (1) Au top and side walls, (2) Au top, Sn side walls.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

1 - R = 2 A 1 + ( 1 - n 2 ) ( l k 0 ) 2 + A ,
A = 4 3 ( n k ) ( l k 0 ) 3 ,
k 0 = 2 π / λ ,
R = ( 1 - S ) I + S W ,
S = 3.71 α 4 ( 1 + 0.24 α 2 - ) for α < 0.7 = 1 for α > 0.7 ,
C 1 = 0 d K ( 1 - k 2 ) 1 / 2 / 2 K ( k ) ,
C 2 = 0 d h / t and L = μ 0 t h / d ,
Z s = η 0 N ( N 2 - 1 ) = r x width E distance E ,