Abstract

The intensity fluctuations of scattered laser light are reinvestigated. The objective is to show that useful spectral information can be obtained by correlation of the recurrence rate of a fixed, arbitrary intensity level. In developing the concept, we first analyze the arrival and departure statistics of the scatterers in certain light-scattering experiments. Kolmogorov’s forward equation is solved for the transition probability of the scatterer occupation number in the detection volume. It then becomes apparent that in the absence of configuration periodicities the scattered light intensity of a many-scatterer system is a process with statistically independent increments. It reduces to a sequence of independent pulses when the occupation number fluctuates between zero and one. All intensity levels recur at exponentially distributed time intervals, the mean recurrence rate depending on the level. Furthermore, the recurrence rate autocorrelation function becomes an important and easily accessible observable. In the absence of scatterer configuration periodicities it equals the scatterer velocity correlation function times a constant factor. Several experimental examples utilizing commerical digital correlators are presented which demonstrate the application of recurrence rate correlation. A case of continuing interest is the measurement of turbulence spectra in fluid flow.

© 1978 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Simulations and experiments on number fluctuations in photon-correlation spectroscopy at low particle concentrations

Evelien J. Nijman, Henk G. Merkus, Jan C. M. Marijnissen, and Brian Scarlett
Appl. Opt. 40(24) 4058-4063 (2001)

Bunching, antibunching, and the Poisson limit of Bose-Einstein processes at low-degeneracy parameters

Lorenzo Basano, Pasquale Ottonello, and Bruno Torre
J. Opt. Soc. Am. B 22(6) 1314-1320 (2005)

Self-scaling of clipped photon correlations

Ronald J. Adrian
Appl. Opt. 20(22) 3901-3905 (1981)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (64)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription