Abstract

We have measured Doppler shift frequency spectra (DSFS) of laser light scattered from red blood cells (RBC’s) flowing through individual human retinal vessels. Each spectrum exhibits a cutoff frequency which is directly related to the maximum RBC velocity at the measurement site. Meaningful DSFS can be measured in times as short as 0.1 s. DSFS obtained from suspensions of polystyrene spheres and RBC’s flowing through glass capillary tubes are used to illustrate the basic principles of the technique and to aid in the interpretation of the in vivo measurements. Our measurements show that maximum RBC velocities in retinal arteries vary markedly during each cardiac cycle.

© 1978 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. B. Benedek, “Optical mixing spectroscopy, with applications to problems in physics, chemistry, biology and engineering,” in Polarisation, Matière et Rayonnement, volume jubilaire en l’honneur d’Alfred Kastler, edited by the French Physical Society (Presses Universitaires de France, Paris, 1969), pp. 49–84.
  2. B. Chu, Laser Light Scattering (Academic, New York, 1974).
  3. Y. Yeh and H. Z. Cummins, “Localized fluid flow measurements with an He-Ne laser spectrometer,” Appl. Phys. Lett. 4, 176–178 (1964).
    [Crossref]
  4. F. Durst, A. Melling, and J. H. Whitelaw, Principles and Practice of Laser Doppler Anemometry (Academic, New York, 1976).
  5. C. Riva, B. Ross, and G. Benedek, “Laser Doppler measurements of blood flow in capillary tubes and retinal arteries,” Invest. Ophthalmol. 11, 936–944 (1972).
    [PubMed]
  6. T. Tanaka, C. E. Riva, and I. Ben-Sira, “Blood velocity measurements in human retinal vessels,” Science 186, 830–831 (1974).
    [Crossref] [PubMed]
  7. F. Reif, Fundamentals of Statistical and Thermal Physics (McGraw-Hill, New York, 1965), pp. 585–587.
  8. D. H. Sliney and B. C. Freasier, “Evaluation of optical radiation hazards,” Appl. Opt. 12, 1–24 (1973).
    [Crossref] [PubMed]
  9. W. H. Li and S. H. Lam, Principles of Fluid Mechanics (Addison-Wesley, Reading, Mass., 1964), pp. 196–198.
  10. G. T. Feke, “Human retinal blood flow and laser velocimetry,” J. Opt. Soc. Am. 65, 1171 A (1975).
  11. C. E. Riva, G. T. Feke, and M. Loebl, “Laser Doppler measurement of blood flow in the fundus of the human eye,” in Proceedings of the 1976 Electro-Optical Systems Designs/International Laser Conference (Industrial and Scientific Conference Management, Inc., Chicago, 1976).

1975 (1)

G. T. Feke, “Human retinal blood flow and laser velocimetry,” J. Opt. Soc. Am. 65, 1171 A (1975).

1974 (1)

T. Tanaka, C. E. Riva, and I. Ben-Sira, “Blood velocity measurements in human retinal vessels,” Science 186, 830–831 (1974).
[Crossref] [PubMed]

1973 (1)

1972 (1)

C. Riva, B. Ross, and G. Benedek, “Laser Doppler measurements of blood flow in capillary tubes and retinal arteries,” Invest. Ophthalmol. 11, 936–944 (1972).
[PubMed]

1964 (1)

Y. Yeh and H. Z. Cummins, “Localized fluid flow measurements with an He-Ne laser spectrometer,” Appl. Phys. Lett. 4, 176–178 (1964).
[Crossref]

Benedek, G.

C. Riva, B. Ross, and G. Benedek, “Laser Doppler measurements of blood flow in capillary tubes and retinal arteries,” Invest. Ophthalmol. 11, 936–944 (1972).
[PubMed]

Benedek, G. B.

G. B. Benedek, “Optical mixing spectroscopy, with applications to problems in physics, chemistry, biology and engineering,” in Polarisation, Matière et Rayonnement, volume jubilaire en l’honneur d’Alfred Kastler, edited by the French Physical Society (Presses Universitaires de France, Paris, 1969), pp. 49–84.

Ben-Sira, I.

T. Tanaka, C. E. Riva, and I. Ben-Sira, “Blood velocity measurements in human retinal vessels,” Science 186, 830–831 (1974).
[Crossref] [PubMed]

Chu, B.

B. Chu, Laser Light Scattering (Academic, New York, 1974).

Cummins, H. Z.

Y. Yeh and H. Z. Cummins, “Localized fluid flow measurements with an He-Ne laser spectrometer,” Appl. Phys. Lett. 4, 176–178 (1964).
[Crossref]

Durst, F.

F. Durst, A. Melling, and J. H. Whitelaw, Principles and Practice of Laser Doppler Anemometry (Academic, New York, 1976).

Feke, G. T.

G. T. Feke, “Human retinal blood flow and laser velocimetry,” J. Opt. Soc. Am. 65, 1171 A (1975).

C. E. Riva, G. T. Feke, and M. Loebl, “Laser Doppler measurement of blood flow in the fundus of the human eye,” in Proceedings of the 1976 Electro-Optical Systems Designs/International Laser Conference (Industrial and Scientific Conference Management, Inc., Chicago, 1976).

Freasier, B. C.

Lam, S. H.

W. H. Li and S. H. Lam, Principles of Fluid Mechanics (Addison-Wesley, Reading, Mass., 1964), pp. 196–198.

Li, W. H.

W. H. Li and S. H. Lam, Principles of Fluid Mechanics (Addison-Wesley, Reading, Mass., 1964), pp. 196–198.

Loebl, M.

C. E. Riva, G. T. Feke, and M. Loebl, “Laser Doppler measurement of blood flow in the fundus of the human eye,” in Proceedings of the 1976 Electro-Optical Systems Designs/International Laser Conference (Industrial and Scientific Conference Management, Inc., Chicago, 1976).

Melling, A.

F. Durst, A. Melling, and J. H. Whitelaw, Principles and Practice of Laser Doppler Anemometry (Academic, New York, 1976).

Reif, F.

F. Reif, Fundamentals of Statistical and Thermal Physics (McGraw-Hill, New York, 1965), pp. 585–587.

Riva, C.

C. Riva, B. Ross, and G. Benedek, “Laser Doppler measurements of blood flow in capillary tubes and retinal arteries,” Invest. Ophthalmol. 11, 936–944 (1972).
[PubMed]

Riva, C. E.

T. Tanaka, C. E. Riva, and I. Ben-Sira, “Blood velocity measurements in human retinal vessels,” Science 186, 830–831 (1974).
[Crossref] [PubMed]

C. E. Riva, G. T. Feke, and M. Loebl, “Laser Doppler measurement of blood flow in the fundus of the human eye,” in Proceedings of the 1976 Electro-Optical Systems Designs/International Laser Conference (Industrial and Scientific Conference Management, Inc., Chicago, 1976).

Ross, B.

C. Riva, B. Ross, and G. Benedek, “Laser Doppler measurements of blood flow in capillary tubes and retinal arteries,” Invest. Ophthalmol. 11, 936–944 (1972).
[PubMed]

Sliney, D. H.

Tanaka, T.

T. Tanaka, C. E. Riva, and I. Ben-Sira, “Blood velocity measurements in human retinal vessels,” Science 186, 830–831 (1974).
[Crossref] [PubMed]

Whitelaw, J. H.

F. Durst, A. Melling, and J. H. Whitelaw, Principles and Practice of Laser Doppler Anemometry (Academic, New York, 1976).

Yeh, Y.

Y. Yeh and H. Z. Cummins, “Localized fluid flow measurements with an He-Ne laser spectrometer,” Appl. Phys. Lett. 4, 176–178 (1964).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

Y. Yeh and H. Z. Cummins, “Localized fluid flow measurements with an He-Ne laser spectrometer,” Appl. Phys. Lett. 4, 176–178 (1964).
[Crossref]

Invest. Ophthalmol. (1)

C. Riva, B. Ross, and G. Benedek, “Laser Doppler measurements of blood flow in capillary tubes and retinal arteries,” Invest. Ophthalmol. 11, 936–944 (1972).
[PubMed]

J. Opt. Soc. Am. (1)

G. T. Feke, “Human retinal blood flow and laser velocimetry,” J. Opt. Soc. Am. 65, 1171 A (1975).

Science (1)

T. Tanaka, C. E. Riva, and I. Ben-Sira, “Blood velocity measurements in human retinal vessels,” Science 186, 830–831 (1974).
[Crossref] [PubMed]

Other (6)

F. Reif, Fundamentals of Statistical and Thermal Physics (McGraw-Hill, New York, 1965), pp. 585–587.

W. H. Li and S. H. Lam, Principles of Fluid Mechanics (Addison-Wesley, Reading, Mass., 1964), pp. 196–198.

F. Durst, A. Melling, and J. H. Whitelaw, Principles and Practice of Laser Doppler Anemometry (Academic, New York, 1976).

G. B. Benedek, “Optical mixing spectroscopy, with applications to problems in physics, chemistry, biology and engineering,” in Polarisation, Matière et Rayonnement, volume jubilaire en l’honneur d’Alfred Kastler, edited by the French Physical Society (Presses Universitaires de France, Paris, 1969), pp. 49–84.

B. Chu, Laser Light Scattering (Academic, New York, 1974).

C. E. Riva, G. T. Feke, and M. Loebl, “Laser Doppler measurement of blood flow in the fundus of the human eye,” in Proceedings of the 1976 Electro-Optical Systems Designs/International Laser Conference (Industrial and Scientific Conference Management, Inc., Chicago, 1976).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

FIG. 1
FIG. 1

Schematic diagram of the optical and electronic arrangement used for the in vitro Doppler shift frequency spectrum measurements.

FIG. 2
FIG. 2

DSFS obtained in a measurement time of 0.8 s from a 0.1% suspension of polystyrene spheres in distilled water flowing through a glass capillary tube.

FIG. 3
FIG. 3

DSFS obtained in a measurement time of 0.8 s from a 45% suspension of human red blood cells in Ringer solution flowing through a glass capillary tube.

FIG. 4
FIG. 4

Schematic diagram of the optical and electronic arrangement used to measure Doppler shift frequency spectra from human retinal vessels. The components are described in the text.

FIG. 5
FIG. 5

DSFS obtained in a measurement time of 0.8 s from a human retinal vein.

FIG. 6
FIG. 6

DSFS obtained in a measurement time of 0.4 s from a human retinal artery.

FIG. 7
FIG. 7

Upper portion: The pulse wave over one cardiac cycle measured from a subject’s finger. Lower portion: The output of the gating module which operates the spectrum analyzer during a time window Δt which begins after a delay time τd with respect to the peak of the pulse wave.

FIG. 8
FIG. 8

DSFS obtained from a human retinal artery during four portions of the cardiac cycle. Each measurement was obtained during three successive cardiac cycles using a time window of 0.15 s. The delay time for each measurement is indicated in the figure.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

Δ f = ( ½ π ) ( K s - K o ) · V ,
V ( r ) = V max [ 1 - ( r / r 0 ) 2 ] ,
E T ( t ) = E Lo ( t ) + i = 0 max E s i ( t ) ,
I ( t ) E T ( t ) 2 E Lo ( t ) 2 + 2 E Lo ( t ) i = 0 max E s i ( t ) + i = 0 max E s ( t ) 2 .
I ( t ) A o 2 cos 2 ω o t + 2 A o A cos ω o t i = 0 max cos ( ω o + Δ ω i ) t .
cos 2 ω o t = ( ½ ) ( 1 + cos 2 ω o t )
cos ω o t cos ( ω o + Δ ω i ) t = ( ½ ) cos Δ ω i t + ( ½ ) cos ( 2 ω o + Δ ω i ) t ,
I ( t ) A o 2 / 2 + A o A i = 0 max cos Δ ω i t .