Abstract

Stereoscopic acuity in the human fovea remains unimpaired with retinal image motions of up to 2 deg/s. These findings apply to lateral motion of the test target alone, and to simultaneous lateral motion of both test and comparison targets. For good stereoscopic acuity, depth motion can be tolerated only so long as the configuration does not move outside the disparity zone for optimal stereoscopic acuity, within 2–3 arc min of either side of the fixation plane. The presence during a short exposure of some stimulus components lying outside this zone leads to an overall reduction of stereoscopic acuity, either by dilution through summation, or by active inhibition of the best achievable depth resolution.

© 1978 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Westheimer and S. P. McKee, “Visual acuity in the presence of retinal-image motion,” J. Opt. Soc. Am. 65, 847–850 (1975).
    [Crossref] [PubMed]
  2. G. Westheimer and S. P. McKee, “Integration zones for visual hyperacuity,” Vision Res. 17, 89–94 (1977).
    [Crossref]
  3. G. Westheimer, “Eye movement responses to a horizontally moving visual stimulus,” Arch. Ophthal. 52, 932–941 (1954).
    [Crossref]
  4. C. Rashbass and G. Westheimer, “Disjunctive eye movements,” J. Physiol. 159, 339–360 (1961).
  5. R. N. Berry, “Quantitative relations among vernier, real depth, and stereoscopic depth acuities,” J. Exp. Psychol. 38, 708–721 (1948).
    [Crossref] [PubMed]
  6. D. E. Mitchell and C. Blakemore, “Binocular depth perception and the corpus callosum,” Vision Res. 10, 49–54 (1970).
    [Crossref] [PubMed]
  7. G. Westheimer and D. E. Mitchell, “The sensory stimulus for disjunctive eye movements,” Vision Res. 9, 749–755 (1969).
    [Crossref] [PubMed]
  8. K. N. Ogle, “Precision and validity of stereoscopic depth perception from double images,” J. Opt. Soc. Am. 43, 906–913 (1953).
    [Crossref]
  9. C. Blakemore, “The range and scope of binocular depth discrimination in man,” J. Physiol. 211, 599–622 (1970).
  10. T. Butler and G. Westheimer (unpublished).
  11. L. A. Riggs and E. W. Niehl, “Eye movements recorded during convergence and divergence,” J. Opt. Soc. Am. 50, 913–920 (1960).
    [Crossref]
  12. U. T. Keesey, “Effects of involuntary eye movements on visual activity,” J. Opt. Soc. Am. 50, 769–774 (1960).
    [Crossref] [PubMed]
  13. G. K. Shortess and J. Krauskopf, “Role of involuntary eye movements in stereoscopic acuity,” J. Opt. Soc. Am. 51, 555–559 (1961).
    [Crossref]

1977 (1)

G. Westheimer and S. P. McKee, “Integration zones for visual hyperacuity,” Vision Res. 17, 89–94 (1977).
[Crossref]

1975 (1)

1970 (2)

D. E. Mitchell and C. Blakemore, “Binocular depth perception and the corpus callosum,” Vision Res. 10, 49–54 (1970).
[Crossref] [PubMed]

C. Blakemore, “The range and scope of binocular depth discrimination in man,” J. Physiol. 211, 599–622 (1970).

1969 (1)

G. Westheimer and D. E. Mitchell, “The sensory stimulus for disjunctive eye movements,” Vision Res. 9, 749–755 (1969).
[Crossref] [PubMed]

1961 (2)

C. Rashbass and G. Westheimer, “Disjunctive eye movements,” J. Physiol. 159, 339–360 (1961).

G. K. Shortess and J. Krauskopf, “Role of involuntary eye movements in stereoscopic acuity,” J. Opt. Soc. Am. 51, 555–559 (1961).
[Crossref]

1960 (2)

1954 (1)

G. Westheimer, “Eye movement responses to a horizontally moving visual stimulus,” Arch. Ophthal. 52, 932–941 (1954).
[Crossref]

1953 (1)

1948 (1)

R. N. Berry, “Quantitative relations among vernier, real depth, and stereoscopic depth acuities,” J. Exp. Psychol. 38, 708–721 (1948).
[Crossref] [PubMed]

Berry, R. N.

R. N. Berry, “Quantitative relations among vernier, real depth, and stereoscopic depth acuities,” J. Exp. Psychol. 38, 708–721 (1948).
[Crossref] [PubMed]

Blakemore, C.

D. E. Mitchell and C. Blakemore, “Binocular depth perception and the corpus callosum,” Vision Res. 10, 49–54 (1970).
[Crossref] [PubMed]

C. Blakemore, “The range and scope of binocular depth discrimination in man,” J. Physiol. 211, 599–622 (1970).

Butler, T.

T. Butler and G. Westheimer (unpublished).

Keesey, U. T.

Krauskopf, J.

McKee, S. P.

G. Westheimer and S. P. McKee, “Integration zones for visual hyperacuity,” Vision Res. 17, 89–94 (1977).
[Crossref]

G. Westheimer and S. P. McKee, “Visual acuity in the presence of retinal-image motion,” J. Opt. Soc. Am. 65, 847–850 (1975).
[Crossref] [PubMed]

Mitchell, D. E.

D. E. Mitchell and C. Blakemore, “Binocular depth perception and the corpus callosum,” Vision Res. 10, 49–54 (1970).
[Crossref] [PubMed]

G. Westheimer and D. E. Mitchell, “The sensory stimulus for disjunctive eye movements,” Vision Res. 9, 749–755 (1969).
[Crossref] [PubMed]

Niehl, E. W.

Ogle, K. N.

Rashbass, C.

C. Rashbass and G. Westheimer, “Disjunctive eye movements,” J. Physiol. 159, 339–360 (1961).

Riggs, L. A.

Shortess, G. K.

Westheimer, G.

G. Westheimer and S. P. McKee, “Integration zones for visual hyperacuity,” Vision Res. 17, 89–94 (1977).
[Crossref]

G. Westheimer and S. P. McKee, “Visual acuity in the presence of retinal-image motion,” J. Opt. Soc. Am. 65, 847–850 (1975).
[Crossref] [PubMed]

G. Westheimer and D. E. Mitchell, “The sensory stimulus for disjunctive eye movements,” Vision Res. 9, 749–755 (1969).
[Crossref] [PubMed]

C. Rashbass and G. Westheimer, “Disjunctive eye movements,” J. Physiol. 159, 339–360 (1961).

G. Westheimer, “Eye movement responses to a horizontally moving visual stimulus,” Arch. Ophthal. 52, 932–941 (1954).
[Crossref]

T. Butler and G. Westheimer (unpublished).

Arch. Ophthal. (1)

G. Westheimer, “Eye movement responses to a horizontally moving visual stimulus,” Arch. Ophthal. 52, 932–941 (1954).
[Crossref]

J. Exp. Psychol. (1)

R. N. Berry, “Quantitative relations among vernier, real depth, and stereoscopic depth acuities,” J. Exp. Psychol. 38, 708–721 (1948).
[Crossref] [PubMed]

J. Opt. Soc. Am. (5)

J. Physiol. (2)

C. Rashbass and G. Westheimer, “Disjunctive eye movements,” J. Physiol. 159, 339–360 (1961).

C. Blakemore, “The range and scope of binocular depth discrimination in man,” J. Physiol. 211, 599–622 (1970).

Vision Res. (3)

D. E. Mitchell and C. Blakemore, “Binocular depth perception and the corpus callosum,” Vision Res. 10, 49–54 (1970).
[Crossref] [PubMed]

G. Westheimer and D. E. Mitchell, “The sensory stimulus for disjunctive eye movements,” Vision Res. 9, 749–755 (1969).
[Crossref] [PubMed]

G. Westheimer and S. P. McKee, “Integration zones for visual hyperacuity,” Vision Res. 17, 89–94 (1977).
[Crossref]

Other (1)

T. Butler and G. Westheimer (unpublished).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

FIG. 1
FIG. 1

Disparity threshold for stereoscopic depth resolution of two vertical lines, 15.5 arc min in length, one above the other, vertically separated by 3 arc min, foveally presented for 190 ms, as a function of lateral motion of both targets in the frontal fixation plane.

FIG. 2
FIG. 2

Disparity threshold for stereoscopic depth resolution of two 15.5 arc min vertical lines, one 3 arc min above the other, foveally presented for 190 ms in the fixation plane, as a function of lateral motion of only the upper line, the lower one remaining stationary.

FIG. 3
FIG. 3

Disparity threshold for stereoscopic depth resolution of a target pair, exposed for 95 ms (▲ - - - ▲) and 190 ms (● — ●), as a function of velocity of the depth motion that sweeps it randomly in a convergent or divergent direction through the frontal fixation plane.

FIG. 4
FIG. 4

Alignment threshold (vernier acuity) for a binocularly seen vertical line pair, each 15.5 arc min long, one 3 arc min above the other, exposed for 190 ms as a function of velocity of depth motion that sweeps it randomly in a convergent or divergent direction through the frontal fixation plane. Changing disparity does not interfere with vernier acuity as it does with stereoscopic acuity.

FIG. 5
FIG. 5

Comparison of stereoscopic acuity for single 190 ms exposures under stationary conditions and with 0.9 deg/sec depth movement (total excursion 6 arc min). A, A′, and C, C′ are thresholds for randomly interspersed presentations at or around a position of 20 arc min eccentricity, ensuring that all components of all stimulus conditions are projected to the same cerebral hemisphere. B and D are in midline, allowing the possibility that the two uniocular stimuli during a depth movement project to different hemispheres. The main effect is the decrement of stereoacuity with retinal eccentricity. The decrease of stereoacuity with depth movement occurs with and without crossed hemispheric projection.

FIG. 6
FIG. 6

Disparity threshold for stereoscopic depth resolution of two 15.5 arc min vertical lines, one 3 arc min above the other, foveally presented for 190 ms, as a function of disparity of both lines with respect to frontal fixation plane.

FIG. 7
FIG. 7

Same data as in Fig. 3, but plotted as a function of the disparity extent of the motion. ▲ - - - ▲ 95 ms exposure, ● — ● 190 ms exposure. Subject JW shows a general reduction in stereoacuity for the shorter duration. These data show that extent of excursion rather than target velocity is the limiting factor for stereoacuity during depth motion.

Tables (1)

Tables Icon

TABLE I Stereoscopic depth resolution threshold (seconds of arc) for stationary target and target moving in depth. Target consists of two vertical lines, each line 15.5 arc min in length, separated by a 3 arc min vertical gap. A target moving at 1.3 degs/disparity traverses the zone of optimum depth resolution in about 52 ms in this subject, SM.