Abstract

Measurements of the spectral distribution of Australian daylight falling on a horizontal plane over the wavelength range 280–2800 nm have been made at two locations in southeastern Australia, one set of measurements in an urban environment and the other in the country. Each set has been subjected to characteristic vector analysis. The major differences between the results and those of northern hemisphere workers are a higher ultraviolet-to-visible ratio and a chromaticity locus slightly to the purple side of the full radiator locus.

© 1978 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. R. Condit and F. Grum, “Spectral energy distribution of daylight,” J. Opt. Soc. Am. 54, 937–944(1964).
    [CrossRef]
  2. S. T. Henderson and D. Hodgkiss, “The Spectral Energy Distribution of Daylight,” Br. J. Appl. Phys. 14, 125–131(1963).
    [CrossRef]
  3. S. T. Henderson and D. Hodgkiss, “The Spectral Energy Distribution of Daylight,” Br. J. Appl. Phys. 15, 947–952(1964).
    [CrossRef]
  4. Y. Nayatani, M. Hitani, and H. Minato, “Chromaticity and Spectral Energy Distribution of Daylight from North Sky at Amagasaki, Japan,” Bull. Electrotech. Lab. 31, 55–63(1967).
  5. S. R. Das and V. D. P. Sastri, “Spectral distribution and color of tropical daylight.” J. Opt. Soc. Am. 55, 319–323(1965).
    [CrossRef]
  6. V. D. P. Sastri and S. R. Das, “Spectral distribution and color of North sky at Delhi,” J. Opt. Soc. Am. 56, 829–830(1966).
    [CrossRef]
  7. V. D. P. Sastri and S. R. Das, “Typical spectral distributions and color for tropical daylight,” J. Opt. Soc. Am. 53, 391–398(1968).
    [CrossRef]
  8. V. D. P. Sastri and S. B. Manamohanan, “Spectral Distribution and Color of North Sky at Bombay,” J. Phys. D 4, 381–386(1971).
    [CrossRef]
  9. G. T. Winch, M. C. Boshoff, C. J. Kok, and A. G. du Toit, “Spectroradiometric and colorimetric characteristics of daylight in the Southern Hemisphere: Pretoria, South Africa,” J. Opt. Soc. Am. 56, 456–464(1966).
    [CrossRef]
  10. C. J. Kok, “Spectral Irradiance of Daylight for Air Mass 2,” J. Phys. D 5, L85–L88(1972).
    [CrossRef]
  11. C. J. Kok, “Spectral Irradiance of Daylight at Pretoria,” J. Phys. D 5, 1513–1520(1972).
    [CrossRef]
  12. D. B. Judd, D. L. MacAdam, and G. Wyszecki, “Spectral distribution of typical daylight as a function of correlated color temperature,” J. Opt. Soc. Am. 54, 1031–1040(1964).
    [CrossRef]
  13. J. L. Simonds, “Application of characteristic vector analysis to photographic and optical response data,” J. Opt. Soc. Am. 53, 968–974(1963)
    [CrossRef]
  14. A. R. Robertson, “Computation of correlated color temperature and distribution temperature,” J. Opt. Soc. Am. 58, 1528–1535(1968).
    [CrossRef]
  15. A. W. S. Tarrant, “The Spectral Power Distribution of Daylight,” Trans. Illum. Eng. Soc. 33, 75–82(1968).
  16. W. E. Knowles Middleton, “Color of the overcast sky,” J. Opt. Soc. Am. 44, 793–798(1954).
    [CrossRef]

1972 (2)

C. J. Kok, “Spectral Irradiance of Daylight for Air Mass 2,” J. Phys. D 5, L85–L88(1972).
[CrossRef]

C. J. Kok, “Spectral Irradiance of Daylight at Pretoria,” J. Phys. D 5, 1513–1520(1972).
[CrossRef]

1971 (1)

V. D. P. Sastri and S. B. Manamohanan, “Spectral Distribution and Color of North Sky at Bombay,” J. Phys. D 4, 381–386(1971).
[CrossRef]

1968 (3)

A. W. S. Tarrant, “The Spectral Power Distribution of Daylight,” Trans. Illum. Eng. Soc. 33, 75–82(1968).

V. D. P. Sastri and S. R. Das, “Typical spectral distributions and color for tropical daylight,” J. Opt. Soc. Am. 53, 391–398(1968).
[CrossRef]

A. R. Robertson, “Computation of correlated color temperature and distribution temperature,” J. Opt. Soc. Am. 58, 1528–1535(1968).
[CrossRef]

1967 (1)

Y. Nayatani, M. Hitani, and H. Minato, “Chromaticity and Spectral Energy Distribution of Daylight from North Sky at Amagasaki, Japan,” Bull. Electrotech. Lab. 31, 55–63(1967).

1966 (2)

1965 (1)

1964 (3)

1963 (2)

S. T. Henderson and D. Hodgkiss, “The Spectral Energy Distribution of Daylight,” Br. J. Appl. Phys. 14, 125–131(1963).
[CrossRef]

J. L. Simonds, “Application of characteristic vector analysis to photographic and optical response data,” J. Opt. Soc. Am. 53, 968–974(1963)
[CrossRef]

1954 (1)

Boshoff, M. C.

Condit, H. R.

Das, S. R.

du Toit, A. G.

Grum, F.

Henderson, S. T.

S. T. Henderson and D. Hodgkiss, “The Spectral Energy Distribution of Daylight,” Br. J. Appl. Phys. 15, 947–952(1964).
[CrossRef]

S. T. Henderson and D. Hodgkiss, “The Spectral Energy Distribution of Daylight,” Br. J. Appl. Phys. 14, 125–131(1963).
[CrossRef]

Hitani, M.

Y. Nayatani, M. Hitani, and H. Minato, “Chromaticity and Spectral Energy Distribution of Daylight from North Sky at Amagasaki, Japan,” Bull. Electrotech. Lab. 31, 55–63(1967).

Hodgkiss, D.

S. T. Henderson and D. Hodgkiss, “The Spectral Energy Distribution of Daylight,” Br. J. Appl. Phys. 15, 947–952(1964).
[CrossRef]

S. T. Henderson and D. Hodgkiss, “The Spectral Energy Distribution of Daylight,” Br. J. Appl. Phys. 14, 125–131(1963).
[CrossRef]

Judd, D. B.

Knowles Middleton, W. E.

Kok, C. J.

C. J. Kok, “Spectral Irradiance of Daylight for Air Mass 2,” J. Phys. D 5, L85–L88(1972).
[CrossRef]

C. J. Kok, “Spectral Irradiance of Daylight at Pretoria,” J. Phys. D 5, 1513–1520(1972).
[CrossRef]

G. T. Winch, M. C. Boshoff, C. J. Kok, and A. G. du Toit, “Spectroradiometric and colorimetric characteristics of daylight in the Southern Hemisphere: Pretoria, South Africa,” J. Opt. Soc. Am. 56, 456–464(1966).
[CrossRef]

MacAdam, D. L.

Manamohanan, S. B.

V. D. P. Sastri and S. B. Manamohanan, “Spectral Distribution and Color of North Sky at Bombay,” J. Phys. D 4, 381–386(1971).
[CrossRef]

Minato, H.

Y. Nayatani, M. Hitani, and H. Minato, “Chromaticity and Spectral Energy Distribution of Daylight from North Sky at Amagasaki, Japan,” Bull. Electrotech. Lab. 31, 55–63(1967).

Nayatani, Y.

Y. Nayatani, M. Hitani, and H. Minato, “Chromaticity and Spectral Energy Distribution of Daylight from North Sky at Amagasaki, Japan,” Bull. Electrotech. Lab. 31, 55–63(1967).

Robertson, A. R.

Sastri, V. D. P.

V. D. P. Sastri and S. B. Manamohanan, “Spectral Distribution and Color of North Sky at Bombay,” J. Phys. D 4, 381–386(1971).
[CrossRef]

V. D. P. Sastri and S. R. Das, “Typical spectral distributions and color for tropical daylight,” J. Opt. Soc. Am. 53, 391–398(1968).
[CrossRef]

V. D. P. Sastri and S. R. Das, “Spectral distribution and color of North sky at Delhi,” J. Opt. Soc. Am. 56, 829–830(1966).
[CrossRef]

S. R. Das and V. D. P. Sastri, “Spectral distribution and color of tropical daylight.” J. Opt. Soc. Am. 55, 319–323(1965).
[CrossRef]

Simonds, J. L.

Tarrant, A. W. S.

A. W. S. Tarrant, “The Spectral Power Distribution of Daylight,” Trans. Illum. Eng. Soc. 33, 75–82(1968).

Winch, G. T.

Wyszecki, G.

Br. J. Appl. Phys. (2)

S. T. Henderson and D. Hodgkiss, “The Spectral Energy Distribution of Daylight,” Br. J. Appl. Phys. 14, 125–131(1963).
[CrossRef]

S. T. Henderson and D. Hodgkiss, “The Spectral Energy Distribution of Daylight,” Br. J. Appl. Phys. 15, 947–952(1964).
[CrossRef]

Bull. Electrotech. Lab. (1)

Y. Nayatani, M. Hitani, and H. Minato, “Chromaticity and Spectral Energy Distribution of Daylight from North Sky at Amagasaki, Japan,” Bull. Electrotech. Lab. 31, 55–63(1967).

J. Opt. Soc. Am. (9)

J. Phys. D (3)

C. J. Kok, “Spectral Irradiance of Daylight for Air Mass 2,” J. Phys. D 5, L85–L88(1972).
[CrossRef]

C. J. Kok, “Spectral Irradiance of Daylight at Pretoria,” J. Phys. D 5, 1513–1520(1972).
[CrossRef]

V. D. P. Sastri and S. B. Manamohanan, “Spectral Distribution and Color of North Sky at Bombay,” J. Phys. D 4, 381–386(1971).
[CrossRef]

Trans. Illum. Eng. Soc. (1)

A. W. S. Tarrant, “The Spectral Power Distribution of Daylight,” Trans. Illum. Eng. Soc. 33, 75–82(1968).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

FIG. 1
FIG. 1

Overall view of the measuring apparatus.

FIG. 2
FIG. 2

Top view of the integrating sphere showing the shutter and port for admitting daylight and, at the left, the Internal lamp and shutter.

FIG. 3
FIG. 3

One of the four monochromators in the apparatus showing the electric motor drive and the detector housing.

FIG. 4
FIG. 4

Typical spectral distribution of Australian daylight.

FIG. 5
FIG. 5

First and second characteristic vectors from the daylight data. (A) Coburg; (B) Bendigo data. Solid circles—first vector; open circles—second vector.

FIG. 6
FIG. 6

Daylight distributions at three correlated color temperatures. Solid line, Bendigo; dashed line, Coburg; squares, Judd; crosses, Winch.

FIG. 7
FIG. 7

Ratio of ultraviolet (300–400 nm) to visible (400–700 nm) irradiance as a function of correlated color temperature. Open circles, Bendigo; crosses, Coburg; curve A, full radiator; curve B and solid circles, Winch; curve C, Judd.

FIG. 8
FIG. 8

Ratio of infrared (780–2800 nm) to visible (400–700 nm) irradiance as a function of correlated color temperature. Open circles, Bendigo; crosses, Coburg; solid line, full radiator.

FIG. 9
FIG. 9

Chromaticity of daylight on the 1931 C.I.E. chromaticity diagram. Circles, Bendigo data points; dashed line, line of best fit of Bendigo data points; triangles, Coburg data points; dotted line, C.I.E. daylight locus; solid line, full radiator locus with isotemperature lines.

FIG. 10
FIG. 10

Distribution of correlated color temperature for sunlight plus skylight measurements at Bendigo and Coburg. (A) partial cloud with sun shining; (B) partial cloud with sun obscured; (C) overcast sky; (D) clear sky.

Tables (6)

Tables Icon

TABLE I Details of monochromators in the measuring system.

Tables Icon

TABLE II Mean distribution and first three characteristic vectors for Bendigo results. X0 = 26 750, X1 = 1491, X2 = 128.0; Y0 = 27 440, Y1 = 1532, Y2 = 744.0; S0 = 83 820, S1 = 49 333, S2 = 8476.

Tables Icon

TABLE III Mean distribution and first four characteristic vectors for Coburg results. X0 = 26 850, X1 = −172.9, X2 = −156.6; Y0 = 27 330, Y1 = −59.12, Y2 = −396.9; S0 = 81 770, S1 = 10 520, S2 = −1161.

Tables Icon

TABLE IV Chromaticity coordinates and scalar multiples used for reconstituted daylight shown in Fig. 6.

Tables Icon

TABLE V Relative spectral irradiance of reconstituted Bendigo daylight at three correlated color temperatures.

Tables Icon

TABLE VI Absolute spectral irradiance at 560 nm for clear sky conditions.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

E λ ( λ 1 ) = Ē λ ( λ 1 ) + M 1 V 1 ( λ 1 ) + M 2 V 2 ( λ 1 ) + M p V p ( λ 1 ) , E λ ( λ 2 ) = Ē λ ( λ 2 ) + M 1 V 1 ( λ 2 ) + M 2 V 2 ( λ 2 ) + M p V p ( λ 2 ) , E λ ( λ r ) = Ē λ ( λ r ) + M 1 V 1 ( λ r ) + M 2 V 2 ( λ r ) + M p V p ( λ r ) , p r    
E λ ( λ ) = Ē λ ( λ ) + M 1 V 1 ( λ ) + M 2 V 2 ( λ ) + + M p V p ( λ ) ;
X = X 0 + M 1 X 1 + M 2 X 2 ,
M 1 = X 0 Y 2 - X 2 Y 0 + ( Y 0 S 2 - Y 2 S 0 ) x + ( X 2 S 0 - X 0 S 2 ) y X 2 Y 1 - X 1 Y 2 + ( Y 2 S 1 - Y 1 S 2 ) x + ( X 1 S 2 - X 2 S 1 ) y , M 2 = X 1 Y 0 - X 0 Y 1 + ( Y 1 S 0 - Y 0 S 1 ) x + ( X 0 S 1 - X 1 S 0 ) y X 2 Y 1 - X 1 Y 2 + ( Y 2 S 1 - Y 1 S 2 ) x + ( X 1 S 2 - X 2 S 1 ) y ,