Abstract

We have applied Kramers-Kronig analysis to reflection spectra to determine the optical constants of ammonium hydroxide and of aqueous solutions of ammonium chloride and bromide. From considerations of the absorption indices k(ν) we conclude that ammonium hydroxide consists of a solution of NH3 in water, in which NH3 molecules are hydrogen bonded to neighboring water molecules. The spectrum of ammonium hydroxide differs from the spectra of ammonium salts, in which bands characteristic of NH4+ ions are prominent. The existence of ammonium hydroxide as an aerosol in planetary atmospheres is briefly discussed.

© 1978 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. S. Garing (private communication).
  2. H. D. Downing and D. Williams, “Optical Constants of Water in the Infrared,” J. Geophys. Res. 80, 1656–1661 (1975).
    [Crossref]
  3. L. W. Pinkley, P. P. Sethna, and D. Williams, “Optical constants of water in the infrared: Influence of temperature,” J. Opt. Soc. Am. 67, 494–499 (1977).
    [Crossref]
  4. P. P. Sethna, L. W. Pinkley, and D. Williams, “Optical constants of ammonium sulfate in the infrared,” J. Opt. Soc. Am 67, 186–190 (1977).
    [Crossref]
  5. P. Rhine, D. Williams, G. H. Hale, and M. R. Querry, “Infrared Optical Constants of Aqueous Solutions of Electrolytes,” J. Phys. Chem. 78, 238–246 (1974).
    [Crossref]
  6. G. Herzberg, Molecular Spectra and Molecular Structure (Van Nostrand, New York, 1945), p. 167.
  7. W. L. France and D. Williams, “Total absorptance of ammonia in the infrared,” J. Opt. Soc. Am. 56, 70–74 (1966).
    [Crossref]
  8. C. W. Robertson and D. Williams, “Optical constants of liquid ammonia in the infrared,” J. Opt. Soc. Am. 63, 188–193 (1973).
    [Crossref]
  9. C. W. Robertson, H. D. Downing, B. Curnutte, and D. Williams, “Optical constants of solid ammonia,” J. Opt. Soc. Am. 65, 432–435 (1975).
    [Crossref]

1977 (2)

P. P. Sethna, L. W. Pinkley, and D. Williams, “Optical constants of ammonium sulfate in the infrared,” J. Opt. Soc. Am 67, 186–190 (1977).
[Crossref]

L. W. Pinkley, P. P. Sethna, and D. Williams, “Optical constants of water in the infrared: Influence of temperature,” J. Opt. Soc. Am. 67, 494–499 (1977).
[Crossref]

1975 (2)

C. W. Robertson, H. D. Downing, B. Curnutte, and D. Williams, “Optical constants of solid ammonia,” J. Opt. Soc. Am. 65, 432–435 (1975).
[Crossref]

H. D. Downing and D. Williams, “Optical Constants of Water in the Infrared,” J. Geophys. Res. 80, 1656–1661 (1975).
[Crossref]

1974 (1)

P. Rhine, D. Williams, G. H. Hale, and M. R. Querry, “Infrared Optical Constants of Aqueous Solutions of Electrolytes,” J. Phys. Chem. 78, 238–246 (1974).
[Crossref]

1973 (1)

1966 (1)

Curnutte, B.

Downing, H. D.

C. W. Robertson, H. D. Downing, B. Curnutte, and D. Williams, “Optical constants of solid ammonia,” J. Opt. Soc. Am. 65, 432–435 (1975).
[Crossref]

H. D. Downing and D. Williams, “Optical Constants of Water in the Infrared,” J. Geophys. Res. 80, 1656–1661 (1975).
[Crossref]

France, W. L.

Garing, J. S.

J. S. Garing (private communication).

Hale, G. H.

P. Rhine, D. Williams, G. H. Hale, and M. R. Querry, “Infrared Optical Constants of Aqueous Solutions of Electrolytes,” J. Phys. Chem. 78, 238–246 (1974).
[Crossref]

Herzberg, G.

G. Herzberg, Molecular Spectra and Molecular Structure (Van Nostrand, New York, 1945), p. 167.

Pinkley, L. W.

P. P. Sethna, L. W. Pinkley, and D. Williams, “Optical constants of ammonium sulfate in the infrared,” J. Opt. Soc. Am 67, 186–190 (1977).
[Crossref]

L. W. Pinkley, P. P. Sethna, and D. Williams, “Optical constants of water in the infrared: Influence of temperature,” J. Opt. Soc. Am. 67, 494–499 (1977).
[Crossref]

Querry, M. R.

P. Rhine, D. Williams, G. H. Hale, and M. R. Querry, “Infrared Optical Constants of Aqueous Solutions of Electrolytes,” J. Phys. Chem. 78, 238–246 (1974).
[Crossref]

Rhine, P.

P. Rhine, D. Williams, G. H. Hale, and M. R. Querry, “Infrared Optical Constants of Aqueous Solutions of Electrolytes,” J. Phys. Chem. 78, 238–246 (1974).
[Crossref]

Robertson, C. W.

Sethna, P. P.

L. W. Pinkley, P. P. Sethna, and D. Williams, “Optical constants of water in the infrared: Influence of temperature,” J. Opt. Soc. Am. 67, 494–499 (1977).
[Crossref]

P. P. Sethna, L. W. Pinkley, and D. Williams, “Optical constants of ammonium sulfate in the infrared,” J. Opt. Soc. Am 67, 186–190 (1977).
[Crossref]

Williams, D.

P. P. Sethna, L. W. Pinkley, and D. Williams, “Optical constants of ammonium sulfate in the infrared,” J. Opt. Soc. Am 67, 186–190 (1977).
[Crossref]

L. W. Pinkley, P. P. Sethna, and D. Williams, “Optical constants of water in the infrared: Influence of temperature,” J. Opt. Soc. Am. 67, 494–499 (1977).
[Crossref]

H. D. Downing and D. Williams, “Optical Constants of Water in the Infrared,” J. Geophys. Res. 80, 1656–1661 (1975).
[Crossref]

C. W. Robertson, H. D. Downing, B. Curnutte, and D. Williams, “Optical constants of solid ammonia,” J. Opt. Soc. Am. 65, 432–435 (1975).
[Crossref]

P. Rhine, D. Williams, G. H. Hale, and M. R. Querry, “Infrared Optical Constants of Aqueous Solutions of Electrolytes,” J. Phys. Chem. 78, 238–246 (1974).
[Crossref]

C. W. Robertson and D. Williams, “Optical constants of liquid ammonia in the infrared,” J. Opt. Soc. Am. 63, 188–193 (1973).
[Crossref]

W. L. France and D. Williams, “Total absorptance of ammonia in the infrared,” J. Opt. Soc. Am. 56, 70–74 (1966).
[Crossref]

J. Geophys. Res. (1)

H. D. Downing and D. Williams, “Optical Constants of Water in the Infrared,” J. Geophys. Res. 80, 1656–1661 (1975).
[Crossref]

J. Opt. Soc. Am (1)

P. P. Sethna, L. W. Pinkley, and D. Williams, “Optical constants of ammonium sulfate in the infrared,” J. Opt. Soc. Am 67, 186–190 (1977).
[Crossref]

J. Opt. Soc. Am. (4)

J. Phys. Chem. (1)

P. Rhine, D. Williams, G. H. Hale, and M. R. Querry, “Infrared Optical Constants of Aqueous Solutions of Electrolytes,” J. Phys. Chem. 78, 238–246 (1974).
[Crossref]

Other (2)

G. Herzberg, Molecular Spectra and Molecular Structure (Van Nostrand, New York, 1945), p. 167.

J. S. Garing (private communication).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

FIG. 1
FIG. 1

Near-normal spectral reflectance R(ν) of a 4.3M solution of ammonium bromide in the infrared.

FIG. 2
FIG. 2

Molar absorption index of ammonium chloride as a solute.

FIG. 3
FIG. 3

Molar absorption index of ammonium bromide as a solute.

FIG. 4
FIG. 4

Near-normal spectral reflectance R(ν) of a 5.4M solution of ammonium hydroxide.

FIG. 5
FIG. 5

Absorption indices for ammonium hydroxide solutions for various concentrations: 1.35M, 2.70M, 4.05M, and 5.40M.

FIG. 6
FIG. 6

The upper part of the figure compares the characteristic bands of ammonium hydroxide with the bands of gaseous, liquid, and solid NH3. The lower part of the figure gives the bands characteristic of the NH4+ ion in solutions and in a crystal. The spectrum shown for the crystal NH4Cl is taken from E. L. Wagner and D. F. Hornig, J. Chem. Phys. 18, 296–304(1950).

Tables (1)

Tables Icon

TABLE I Characteristic band intensities.a

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

{ [ k ( ν ) sol - a k ( ν ) w ] / M } d ν