Abstract

Hyperfine splitting and broadening have been measured for seven doublet series laser lines between the 2s 22p4(3P)3p and 2s 22p4(3P)3s configurations of fluorine, allowing for unambiguous determination of the hyperfine splittings in these levels. The broadening is shown to be a strong indication that the upper-level fluorine atoms are remnants of dissociative states of HeF.

© 1978 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. A. Kovacs and C. J. Ultee, Appl. Phys. Lett. 17, 39–40 (1970).
    [Crossref]
  2. W. Q. Jeffers and C. E. Wiswall, Appl. Phys. Lett. 17, 444–447 (1970).
    [Crossref]
  3. A. E. Florin and R. J. Jensen, IEEE J. Quantum Electron QE-7, 472 (1971).
  4. D. G. Sutton, L. Galvan, P. R. Valenzuela, and S. N. Suchard, IEEE J. Quantum Electron QE-11, 54–57 (1975).
    [Crossref]
  5. I. J. Bigio and R. F. Begley, Appl. Phys. Lett. 28, 263–264 (1976).
    [Crossref]
  6. L. O. Hocker and Trinh Bang Phi, Appl. Phys. Lett. 29, 493–494 (1976).
    [Crossref]
  7. This laser has been operated in our laboratory with an electrical efficiency of greater than 0.5%.
  8. J. S. Campbell, Z. Phys. 84, 393–401 (1933).
    [Crossref]
  9. K. Lidén, Ark. Fys. 1, 229–267 (1949).
  10. L. N. Tunitskii and E. M. Cherkasov, Opt. Spektrosk. 23, 287–293 (1967): Opt. Spectr. 23, 154–157 (1967).
  11. M. S. Feld, B. J. Feldman, A. Javan, and L. H. Domash, Phys. Rev. A 7, 257–262 (1973).
    [Crossref]
  12. L. H. Domash, B. J. Feldman, and M. S. Feld, Phys. Rev. A 7, 262–269 (1973).
    [Crossref]

1976 (2)

I. J. Bigio and R. F. Begley, Appl. Phys. Lett. 28, 263–264 (1976).
[Crossref]

L. O. Hocker and Trinh Bang Phi, Appl. Phys. Lett. 29, 493–494 (1976).
[Crossref]

1975 (1)

D. G. Sutton, L. Galvan, P. R. Valenzuela, and S. N. Suchard, IEEE J. Quantum Electron QE-11, 54–57 (1975).
[Crossref]

1973 (2)

M. S. Feld, B. J. Feldman, A. Javan, and L. H. Domash, Phys. Rev. A 7, 257–262 (1973).
[Crossref]

L. H. Domash, B. J. Feldman, and M. S. Feld, Phys. Rev. A 7, 262–269 (1973).
[Crossref]

1971 (1)

A. E. Florin and R. J. Jensen, IEEE J. Quantum Electron QE-7, 472 (1971).

1970 (2)

M. A. Kovacs and C. J. Ultee, Appl. Phys. Lett. 17, 39–40 (1970).
[Crossref]

W. Q. Jeffers and C. E. Wiswall, Appl. Phys. Lett. 17, 444–447 (1970).
[Crossref]

1967 (1)

L. N. Tunitskii and E. M. Cherkasov, Opt. Spektrosk. 23, 287–293 (1967): Opt. Spectr. 23, 154–157 (1967).

1949 (1)

K. Lidén, Ark. Fys. 1, 229–267 (1949).

1933 (1)

J. S. Campbell, Z. Phys. 84, 393–401 (1933).
[Crossref]

Bang Phi, Trinh

L. O. Hocker and Trinh Bang Phi, Appl. Phys. Lett. 29, 493–494 (1976).
[Crossref]

Begley, R. F.

I. J. Bigio and R. F. Begley, Appl. Phys. Lett. 28, 263–264 (1976).
[Crossref]

Bigio, I. J.

I. J. Bigio and R. F. Begley, Appl. Phys. Lett. 28, 263–264 (1976).
[Crossref]

Campbell, J. S.

J. S. Campbell, Z. Phys. 84, 393–401 (1933).
[Crossref]

Cherkasov, E. M.

L. N. Tunitskii and E. M. Cherkasov, Opt. Spektrosk. 23, 287–293 (1967): Opt. Spectr. 23, 154–157 (1967).

Domash, L. H.

M. S. Feld, B. J. Feldman, A. Javan, and L. H. Domash, Phys. Rev. A 7, 257–262 (1973).
[Crossref]

L. H. Domash, B. J. Feldman, and M. S. Feld, Phys. Rev. A 7, 262–269 (1973).
[Crossref]

Feld, M. S.

L. H. Domash, B. J. Feldman, and M. S. Feld, Phys. Rev. A 7, 262–269 (1973).
[Crossref]

M. S. Feld, B. J. Feldman, A. Javan, and L. H. Domash, Phys. Rev. A 7, 257–262 (1973).
[Crossref]

Feldman, B. J.

M. S. Feld, B. J. Feldman, A. Javan, and L. H. Domash, Phys. Rev. A 7, 257–262 (1973).
[Crossref]

L. H. Domash, B. J. Feldman, and M. S. Feld, Phys. Rev. A 7, 262–269 (1973).
[Crossref]

Florin, A. E.

A. E. Florin and R. J. Jensen, IEEE J. Quantum Electron QE-7, 472 (1971).

Galvan, L.

D. G. Sutton, L. Galvan, P. R. Valenzuela, and S. N. Suchard, IEEE J. Quantum Electron QE-11, 54–57 (1975).
[Crossref]

Hocker, L. O.

L. O. Hocker and Trinh Bang Phi, Appl. Phys. Lett. 29, 493–494 (1976).
[Crossref]

Javan, A.

M. S. Feld, B. J. Feldman, A. Javan, and L. H. Domash, Phys. Rev. A 7, 257–262 (1973).
[Crossref]

Jeffers, W. Q.

W. Q. Jeffers and C. E. Wiswall, Appl. Phys. Lett. 17, 444–447 (1970).
[Crossref]

Jensen, R. J.

A. E. Florin and R. J. Jensen, IEEE J. Quantum Electron QE-7, 472 (1971).

Kovacs, M. A.

M. A. Kovacs and C. J. Ultee, Appl. Phys. Lett. 17, 39–40 (1970).
[Crossref]

Lidén, K.

K. Lidén, Ark. Fys. 1, 229–267 (1949).

Suchard, S. N.

D. G. Sutton, L. Galvan, P. R. Valenzuela, and S. N. Suchard, IEEE J. Quantum Electron QE-11, 54–57 (1975).
[Crossref]

Sutton, D. G.

D. G. Sutton, L. Galvan, P. R. Valenzuela, and S. N. Suchard, IEEE J. Quantum Electron QE-11, 54–57 (1975).
[Crossref]

Tunitskii, L. N.

L. N. Tunitskii and E. M. Cherkasov, Opt. Spektrosk. 23, 287–293 (1967): Opt. Spectr. 23, 154–157 (1967).

Ultee, C. J.

M. A. Kovacs and C. J. Ultee, Appl. Phys. Lett. 17, 39–40 (1970).
[Crossref]

Valenzuela, P. R.

D. G. Sutton, L. Galvan, P. R. Valenzuela, and S. N. Suchard, IEEE J. Quantum Electron QE-11, 54–57 (1975).
[Crossref]

Wiswall, C. E.

W. Q. Jeffers and C. E. Wiswall, Appl. Phys. Lett. 17, 444–447 (1970).
[Crossref]

Appl. Phys. Lett. (4)

M. A. Kovacs and C. J. Ultee, Appl. Phys. Lett. 17, 39–40 (1970).
[Crossref]

W. Q. Jeffers and C. E. Wiswall, Appl. Phys. Lett. 17, 444–447 (1970).
[Crossref]

I. J. Bigio and R. F. Begley, Appl. Phys. Lett. 28, 263–264 (1976).
[Crossref]

L. O. Hocker and Trinh Bang Phi, Appl. Phys. Lett. 29, 493–494 (1976).
[Crossref]

Ark. Fys. (1)

K. Lidén, Ark. Fys. 1, 229–267 (1949).

IEEE J. Quantum Electron (2)

A. E. Florin and R. J. Jensen, IEEE J. Quantum Electron QE-7, 472 (1971).

D. G. Sutton, L. Galvan, P. R. Valenzuela, and S. N. Suchard, IEEE J. Quantum Electron QE-11, 54–57 (1975).
[Crossref]

Opt. Spektrosk. (1)

L. N. Tunitskii and E. M. Cherkasov, Opt. Spektrosk. 23, 287–293 (1967): Opt. Spectr. 23, 154–157 (1967).

Phys. Rev. A (2)

M. S. Feld, B. J. Feldman, A. Javan, and L. H. Domash, Phys. Rev. A 7, 257–262 (1973).
[Crossref]

L. H. Domash, B. J. Feldman, and M. S. Feld, Phys. Rev. A 7, 262–269 (1973).
[Crossref]

Z. Phys. (1)

J. S. Campbell, Z. Phys. 84, 393–401 (1933).
[Crossref]

Other (1)

This laser has been operated in our laboratory with an electrical efficiency of greater than 0.5%.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

FIG. 1
FIG. 1

Composite pictures showing the effect of discharge conditions on the line shape of the 712.8 and 703.7 nm laser transitions. Positions of the hyperfine transition line centers determined in this study are shown in row a. Row b gives the splittings derived from K. Lidén, Ref. 9.

FIG. 2
FIG. 2

Qualitative representation of the potential curves for two groups of HeF electronic states showing the model for providing selective excitation of the doublet 3s states of fluorine. Bound HeF is produced from 2s(1S) helium and ground-state fluorine. The HeF then predissociates to a dissociative state with ground-state He and 2p4 (3P1)3s(2P0, 2S0, or 2D0) fluorine as its separated atom limit.

Tables (2)

Tables Icon

TABLE I Hyperfine splittings in fluorine I.

Tables Icon

TABLE II Fluorine laser linewidths.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

V = ( 2 M F + M He M F M He ( E c - E u ) ) 1 / 2 ,