Abstract

The hyperfine structure of several lines of the spectrum of cobalt between 4000 and 4300 Å has been analyzed using the technique of high-resolution spectroscopy. As a result, the value of the magnetic hyperfine structure constant for 32 states has been found. The classification for four of the lines has also been inferred from the observed hyperfine structure patterns.

© 1978 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. C. Wolff and G. Wallerstein, “A Rediscussion of the Ratio of Manganese to Iron in G Dwarfs and two Yellow Giants,” Astrophys. J. 144, 419 (1966).
    [CrossRef]
  2. H. Holweger and K. B. Oertel, “Influence of Hyperfine Structure on the Solar Cobalt Abundance,” Astron. Astrophys. 10, 434 (1971).
  3. E. Rasmussen, “Uber die Kernspinaufspalgung Einiger Cobaltterme,” Z. Phys. 102, 229 (1936).
    [CrossRef]
  4. K. B. Oertel, “Optische Messung Der Hyperfeinstrukturaufs-paltungen von CoI-Termen,” Z. Phys. 236, 90 (1970).
    [CrossRef]
  5. W. J. Childs and L. S. Goodman, “Hyperfine structure of seven low atomic levels in 59Co, and the nuclear electric-quadrupole moment,” Phys. Rev. 170, 50 (1968).
    [CrossRef]
  6. H. Kopfermann, Nuclear Moments (Academic, New York, 1958).
  7. J. Reader and S. P. Davis, “Promethium 147 hyperfine structure under high resolution,” J. Opt. Soc. Am. 53, 431 (1963).
    [CrossRef]
  8. J. Reader, “Analysis of the Hyperfine Structure of Pm147,” Ph.D. thesis (University of California, Berkeley, 1962).
  9. K. W. Meissner, “Interference spectroscopy,” J. Opt. Soc. Am. 31, 405 (1941), p. 419.
    [CrossRef]
  10. A. Giachetti, R. W. Stanley, and R. Zalubas, “Proposed secondary-standard wavelengths in the spectrum of thorium,” J. Opt. Soc. Am. 60, 474 (1970).
    [CrossRef]
  11. P. G. Phillips, “Program Redukt,” Department of Astronomy, U.C., Berkeley (personal communication).
  12. J. G. Conway, “Program Polygn,” Lawrence Radiation Laboratory, U.C., Berkeley (personal communication).
  13. H. N. Russell, R. B. King, and C. E. Moore, “The arc spectrum of cobalt,” Phys. Rev. 58, 407 (1940).
    [CrossRef]
  14. C. E. Moore, Atomic Energy LevelsNBS Circ. No. 467 (U.S. GPO, Washington, D.C., 1952).
  15. H. E. White, Introduction to Atomic Spectra (McGraw-Hill, New York, 1934).
  16. N. F. Ramsey, Nuclear Moments (Wiley, New York, 1953).
  17. A. Rosén, “Relativistic Effects in the Magnetic Hyperfine Structure of the 3dn4s2 Atoms,” Phys. Scr. 8, 154 (1973):
    [CrossRef]
  18. C. Bauche-Arnoult, “Effects of the Configuration Interaction on Atomic Hyperfine Structure,” Proc. R. Soc. Lond. 322, 361 (1971).
    [CrossRef]

1973 (1)

A. Rosén, “Relativistic Effects in the Magnetic Hyperfine Structure of the 3dn4s2 Atoms,” Phys. Scr. 8, 154 (1973):
[CrossRef]

1971 (2)

C. Bauche-Arnoult, “Effects of the Configuration Interaction on Atomic Hyperfine Structure,” Proc. R. Soc. Lond. 322, 361 (1971).
[CrossRef]

H. Holweger and K. B. Oertel, “Influence of Hyperfine Structure on the Solar Cobalt Abundance,” Astron. Astrophys. 10, 434 (1971).

1970 (2)

K. B. Oertel, “Optische Messung Der Hyperfeinstrukturaufs-paltungen von CoI-Termen,” Z. Phys. 236, 90 (1970).
[CrossRef]

A. Giachetti, R. W. Stanley, and R. Zalubas, “Proposed secondary-standard wavelengths in the spectrum of thorium,” J. Opt. Soc. Am. 60, 474 (1970).
[CrossRef]

1968 (1)

W. J. Childs and L. S. Goodman, “Hyperfine structure of seven low atomic levels in 59Co, and the nuclear electric-quadrupole moment,” Phys. Rev. 170, 50 (1968).
[CrossRef]

1966 (1)

S. C. Wolff and G. Wallerstein, “A Rediscussion of the Ratio of Manganese to Iron in G Dwarfs and two Yellow Giants,” Astrophys. J. 144, 419 (1966).
[CrossRef]

1963 (1)

1941 (1)

1940 (1)

H. N. Russell, R. B. King, and C. E. Moore, “The arc spectrum of cobalt,” Phys. Rev. 58, 407 (1940).
[CrossRef]

1936 (1)

E. Rasmussen, “Uber die Kernspinaufspalgung Einiger Cobaltterme,” Z. Phys. 102, 229 (1936).
[CrossRef]

Bauche-Arnoult, C.

C. Bauche-Arnoult, “Effects of the Configuration Interaction on Atomic Hyperfine Structure,” Proc. R. Soc. Lond. 322, 361 (1971).
[CrossRef]

Childs, W. J.

W. J. Childs and L. S. Goodman, “Hyperfine structure of seven low atomic levels in 59Co, and the nuclear electric-quadrupole moment,” Phys. Rev. 170, 50 (1968).
[CrossRef]

Conway, J. G.

J. G. Conway, “Program Polygn,” Lawrence Radiation Laboratory, U.C., Berkeley (personal communication).

Davis, S. P.

Giachetti, A.

Goodman, L. S.

W. J. Childs and L. S. Goodman, “Hyperfine structure of seven low atomic levels in 59Co, and the nuclear electric-quadrupole moment,” Phys. Rev. 170, 50 (1968).
[CrossRef]

Holweger, H.

H. Holweger and K. B. Oertel, “Influence of Hyperfine Structure on the Solar Cobalt Abundance,” Astron. Astrophys. 10, 434 (1971).

King, R. B.

H. N. Russell, R. B. King, and C. E. Moore, “The arc spectrum of cobalt,” Phys. Rev. 58, 407 (1940).
[CrossRef]

Kopfermann, H.

H. Kopfermann, Nuclear Moments (Academic, New York, 1958).

Meissner, K. W.

Moore, C. E.

H. N. Russell, R. B. King, and C. E. Moore, “The arc spectrum of cobalt,” Phys. Rev. 58, 407 (1940).
[CrossRef]

C. E. Moore, Atomic Energy LevelsNBS Circ. No. 467 (U.S. GPO, Washington, D.C., 1952).

Oertel, K. B.

H. Holweger and K. B. Oertel, “Influence of Hyperfine Structure on the Solar Cobalt Abundance,” Astron. Astrophys. 10, 434 (1971).

K. B. Oertel, “Optische Messung Der Hyperfeinstrukturaufs-paltungen von CoI-Termen,” Z. Phys. 236, 90 (1970).
[CrossRef]

Phillips, P. G.

P. G. Phillips, “Program Redukt,” Department of Astronomy, U.C., Berkeley (personal communication).

Ramsey, N. F.

N. F. Ramsey, Nuclear Moments (Wiley, New York, 1953).

Rasmussen, E.

E. Rasmussen, “Uber die Kernspinaufspalgung Einiger Cobaltterme,” Z. Phys. 102, 229 (1936).
[CrossRef]

Reader, J.

J. Reader and S. P. Davis, “Promethium 147 hyperfine structure under high resolution,” J. Opt. Soc. Am. 53, 431 (1963).
[CrossRef]

J. Reader, “Analysis of the Hyperfine Structure of Pm147,” Ph.D. thesis (University of California, Berkeley, 1962).

Rosén, A.

A. Rosén, “Relativistic Effects in the Magnetic Hyperfine Structure of the 3dn4s2 Atoms,” Phys. Scr. 8, 154 (1973):
[CrossRef]

Russell, H. N.

H. N. Russell, R. B. King, and C. E. Moore, “The arc spectrum of cobalt,” Phys. Rev. 58, 407 (1940).
[CrossRef]

Stanley, R. W.

Wallerstein, G.

S. C. Wolff and G. Wallerstein, “A Rediscussion of the Ratio of Manganese to Iron in G Dwarfs and two Yellow Giants,” Astrophys. J. 144, 419 (1966).
[CrossRef]

White, H. E.

H. E. White, Introduction to Atomic Spectra (McGraw-Hill, New York, 1934).

Wolff, S. C.

S. C. Wolff and G. Wallerstein, “A Rediscussion of the Ratio of Manganese to Iron in G Dwarfs and two Yellow Giants,” Astrophys. J. 144, 419 (1966).
[CrossRef]

Zalubas, R.

Astron. Astrophys. (1)

H. Holweger and K. B. Oertel, “Influence of Hyperfine Structure on the Solar Cobalt Abundance,” Astron. Astrophys. 10, 434 (1971).

Astrophys. J. (1)

S. C. Wolff and G. Wallerstein, “A Rediscussion of the Ratio of Manganese to Iron in G Dwarfs and two Yellow Giants,” Astrophys. J. 144, 419 (1966).
[CrossRef]

J. Opt. Soc. Am. (3)

Phys. Rev. (2)

H. N. Russell, R. B. King, and C. E. Moore, “The arc spectrum of cobalt,” Phys. Rev. 58, 407 (1940).
[CrossRef]

W. J. Childs and L. S. Goodman, “Hyperfine structure of seven low atomic levels in 59Co, and the nuclear electric-quadrupole moment,” Phys. Rev. 170, 50 (1968).
[CrossRef]

Phys. Scr. (1)

A. Rosén, “Relativistic Effects in the Magnetic Hyperfine Structure of the 3dn4s2 Atoms,” Phys. Scr. 8, 154 (1973):
[CrossRef]

Proc. R. Soc. Lond. (1)

C. Bauche-Arnoult, “Effects of the Configuration Interaction on Atomic Hyperfine Structure,” Proc. R. Soc. Lond. 322, 361 (1971).
[CrossRef]

Z. Phys. (2)

E. Rasmussen, “Uber die Kernspinaufspalgung Einiger Cobaltterme,” Z. Phys. 102, 229 (1936).
[CrossRef]

K. B. Oertel, “Optische Messung Der Hyperfeinstrukturaufs-paltungen von CoI-Termen,” Z. Phys. 236, 90 (1970).
[CrossRef]

Other (7)

H. Kopfermann, Nuclear Moments (Academic, New York, 1958).

P. G. Phillips, “Program Redukt,” Department of Astronomy, U.C., Berkeley (personal communication).

J. G. Conway, “Program Polygn,” Lawrence Radiation Laboratory, U.C., Berkeley (personal communication).

J. Reader, “Analysis of the Hyperfine Structure of Pm147,” Ph.D. thesis (University of California, Berkeley, 1962).

C. E. Moore, Atomic Energy LevelsNBS Circ. No. 467 (U.S. GPO, Washington, D.C., 1952).

H. E. White, Introduction to Atomic Spectra (McGraw-Hill, New York, 1934).

N. F. Ramsey, Nuclear Moments (Wiley, New York, 1953).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

FIG. 1
FIG. 1

(a) Transition diagram for a4F9/2z6F7/2. The values for the hyperfine constants as well as for the hyperfine intervals are expressed in mk (10−3 cm−1), For the lower state the values of A and B are those given in Ref. 5. For upper state the adopted value for A is an average between Rasmussen’s3 and the result obtained in the present experiment (Table II), while the contribution of the electric-quadrupole term is being neglected. Theoretical intensities are given on the top of the hyperfine components. The indicated interval of 169 mk corresponds to the wave-number difference between the components associated with the transitions F =7 → 8 and F = 4 → 5. (b) Interferometrically observed profile of the line λ4109.7. The estimated hyperfine width is 174 ± 7 mk.

FIG. 2
FIG. 2

(a) Transition diagram for a4F3/2z6D1/2. The values of A and B for the lower level are those given in Ref. 5. The splitting of the upper state is inferred from the observed structure of λ4090.3 [Fig. 2(b)]. The shown intervals of 116 and 171 mK correspond to the wave-number differences between the respective centers of gravity of the components originated in the transitions F = 4 → 3 and F = 3 → 2, F = 3 → 3 and F = 4 → 4, and F = 3 → 4 and F = 4 → 5. (b) Structure of the line λ4090.3 as observed in the grating spectrum. The experimental intervals are 98 ± 10 mK and 169 ± 10 mK.

FIG. 3
FIG. 3

(a) Transition diagram for b4F3/2z4D5/2. The hyperfine constants shown in figure are taken from Ref. 4. The contribution of the electric-quadrupole term is being neglected for the lower level. The interval of 124 mK is the wave-number difference between the component associated with the transition F = 6 → 5 and the center of gravity of the components F = 5 → 4 and F = 5 → 5, while 101 and 83 mK are the respective wave-number differences between the centers of gravity of the components F = 5 → 4 and F = 5 → 5; F= 4 → 3 and F = 4 → 4; and F = 3 → 2, F = 3 → 3 and F =3 → 4. (b) Transition diagram for b4F5/2z4F3/2. The values of the hyperfine constants for the lower state are taken from Ref. 5 while those for the upper state are from Ref. 4. The shown interval of 162 mK is the wave-number difference between the components originated in the transitions F = 2 → 2 and F = 5 → 6. (c) Interferometrically observed profile of λ4019.3. The estimated hyperfine width is 162 ± 7 mK.

FIG. 4
FIG. 4

(a) Transition diagram for a4F3/2z6G3/2. The values of A and B for the lower state are those given in Ref. 5. The value of A for the upper level is inferred from the splitting of λ4033.0 [Fig. 4(b)], while the contribution of the electric-quadrupole term is being neglected. The shown interval of 91, 123, and 156.5 mK are the respective wave-number differences between the centers of gravity of the hfs components F = 3 → 2 and F = 2 → 2; F = 4 → 3 and F = 2 → 3; F = 5 → 4, F = 4 → 4 and F = 3 → 4; and F = 5 → 5 and F = 4 → 5. (b) Interferometrically observed structure of the line λ4033.0. The experimental intervals are 90 ± 4, 127 ± 4, and 156 ± 2.

Tables (3)

Tables Icon

TABLE I Wavelength and structure of the observed lines. (The experimental errors estimated for the wave numbers of the hfs components are lower than 5%, except for those ones indicated by italic numbers which have higher uncertainties.)

Tables Icon

TABLE II Magnetic hfs coupling constant.

Tables Icon

TABLE III Proposed classification for four cobalt lines.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

W F = W J + ½ A K + B ( ¾ ) K ( K + 1 ) - J ( J + 1 ) I ( 1 + 1 ) 2 I ( 2 I - 1 ) J ( 2 J - 1 ) ,
K = F ( F + 1 ) - J ( J + 1 ) - I ( I + 1 ) ,
F = I + J ;             I + J - 1 ; ;             I - J
Δ F = 0 ; ± 1 F = 0 F = 0.