Abstract

The spectral and angular distributions of the scattered light from aggregated noble-metal films have been investigated. The films were formed by evaporation on hot glass substrates (300 °C) in order to obtain relatively large and regular size aggregates (200–1000 Å). The scattered light from the aggregated films in general exhibited a peak in the spectral region that was studied (0.3–1.0 μm). The experimental spectral and angular measurements have been compared to results calculated from a theory considering the aggregates as spheroidal particles and satisfactory agreement has been obtained. An additional structure in the spectral distribution of the scattered light has been found in the case of relatively large size silver aggregates (> 1000 Å).

© 1978 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. C. Maxwell-Garnett, Philos. Trans. R. Soc: Lond. A 203, 385 (1904); Philos. Trans. R. Soc. Lond. A 205, 237 (1906).
    [CrossRef]
  2. A. Meessen, J. Phys. (Paris) 33, 371 (1972).
    [CrossRef]
  3. T. Yamaguchi, S. Yoshida, and A. Kinbara, J. Opt. Soc. Am. 64, 1563 (1974).
    [CrossRef]
  4. V. V. Truong and G. D. Scott, J. Opt. Soc. Am. 67, 502 (1977).
    [CrossRef]
  5. G. Ciobanu and E. Toma, Rev. Phys. (Bucarest) 4, 475 (1959).
  6. J. Dalmas, C. R. Acad. Sci. E 265, B 1123 (1967).
  7. E. A. Allen, G. D. Scott, K. T. Thompson, and F. Veas, J. Opt. Soc. Am. 64, 1190 (1974).
    [CrossRef]
  8. P. Bousquet, C. R. Acad. Sci. B 266, 505 (1968).
  9. V. V. Truong and G. D. Scott, J. Opt. Soc. Am. 66, 124 (1976).
    [CrossRef]
  10. P. B. Johnson and R. W. Christy, Phys. Rev. B 6, 4370 (1972).
    [CrossRef]
  11. S. Asano and G. Yamamoto, Appl. Opt. 14, 29 (1975).
    [PubMed]
  12. J. Dalmas, Opt. Acta 19, 687 (1972).
    [CrossRef]

1977 (1)

1976 (1)

1975 (1)

1974 (2)

1972 (3)

A. Meessen, J. Phys. (Paris) 33, 371 (1972).
[CrossRef]

J. Dalmas, Opt. Acta 19, 687 (1972).
[CrossRef]

P. B. Johnson and R. W. Christy, Phys. Rev. B 6, 4370 (1972).
[CrossRef]

1968 (1)

P. Bousquet, C. R. Acad. Sci. B 266, 505 (1968).

1967 (1)

J. Dalmas, C. R. Acad. Sci. E 265, B 1123 (1967).

1959 (1)

G. Ciobanu and E. Toma, Rev. Phys. (Bucarest) 4, 475 (1959).

1904 (1)

J. C. Maxwell-Garnett, Philos. Trans. R. Soc: Lond. A 203, 385 (1904); Philos. Trans. R. Soc. Lond. A 205, 237 (1906).
[CrossRef]

Allen, E. A.

Asano, S.

Bousquet, P.

P. Bousquet, C. R. Acad. Sci. B 266, 505 (1968).

Christy, R. W.

P. B. Johnson and R. W. Christy, Phys. Rev. B 6, 4370 (1972).
[CrossRef]

Ciobanu, G.

G. Ciobanu and E. Toma, Rev. Phys. (Bucarest) 4, 475 (1959).

Dalmas, J.

J. Dalmas, Opt. Acta 19, 687 (1972).
[CrossRef]

J. Dalmas, C. R. Acad. Sci. E 265, B 1123 (1967).

Johnson, P. B.

P. B. Johnson and R. W. Christy, Phys. Rev. B 6, 4370 (1972).
[CrossRef]

Kinbara, A.

Maxwell-Garnett, J. C.

J. C. Maxwell-Garnett, Philos. Trans. R. Soc: Lond. A 203, 385 (1904); Philos. Trans. R. Soc. Lond. A 205, 237 (1906).
[CrossRef]

Meessen, A.

A. Meessen, J. Phys. (Paris) 33, 371 (1972).
[CrossRef]

Scott, G. D.

Thompson, K. T.

Toma, E.

G. Ciobanu and E. Toma, Rev. Phys. (Bucarest) 4, 475 (1959).

Truong, V. V.

Veas, F.

Yamaguchi, T.

Yamamoto, G.

Yoshida, S.

Appl. Opt. (1)

C. R. Acad. Sci. B (1)

P. Bousquet, C. R. Acad. Sci. B 266, 505 (1968).

C. R. Acad. Sci. E (1)

J. Dalmas, C. R. Acad. Sci. E 265, B 1123 (1967).

J. Opt. Soc. Am. (4)

J. Phys. (Paris) (1)

A. Meessen, J. Phys. (Paris) 33, 371 (1972).
[CrossRef]

Opt. Acta (1)

J. Dalmas, Opt. Acta 19, 687 (1972).
[CrossRef]

Philos. Trans. R. Soc: Lond. A (1)

J. C. Maxwell-Garnett, Philos. Trans. R. Soc: Lond. A 203, 385 (1904); Philos. Trans. R. Soc. Lond. A 205, 237 (1906).
[CrossRef]

Phys. Rev. B (1)

P. B. Johnson and R. W. Christy, Phys. Rev. B 6, 4370 (1972).
[CrossRef]

Rev. Phys. (Bucarest) (1)

G. Ciobanu and E. Toma, Rev. Phys. (Bucarest) 4, 475 (1959).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

FIG. 1
FIG. 1

Calculated and experimental results for the spectral distribution of the relative scattered intensity from the 10 and 15 mg copper films. Solid line, calculated; dashed line, experimental. The intensity scale is arbitrary.

FIG. 2
FIG. 2

Calculated and experimental results for the spectral distribution of the relative scattered intensity from the 15 and 35 mg silver films. Solid line, calculated; dashed line, experimental. The intensity scale is arbitrary.

FIG. 3
FIG. 3

Calculated and experimental results for the spectral distribution of the relative scattered intensity from the 15, 60, and 80 mg gold films. Solid line, calculated; dashed line, experimental. The intensity scale is arbitrary.

FIG. 4
FIG. 4

Calculated and experimental angular distributions of the relative scattered intensity for the 15 mg copper film. Solid line, calculated; ⊙, experimental. The intensity scale is arbitrary.

FIG. 5
FIG. 5

Backward-scattering spectral distributions from silver films. The intensity scale is arbitrary.

FIG. 6
FIG. 6

Spectral distribution of the backward scattering (β = 140°) from silver particles as given by the Mie theory. The curves are shown with the particle diameter (1500 and 2000 Å) and the scale for the scattered light is arbitrary.

Tables (1)

Tables Icon

TABLE I Characteristics of films used in measurements. a is the length of semiaxis of the ellipsoidal particle in the direction perpendicular to the film plane. b is the length of semiaxis of the ellipsoidal particle in the direction parallel to the film plane. Area A = 16 mm2.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

α = 1 4 π - 1 [ f ( - 1 ) + 1 ] + γ ,
α = 1 4 π - 1 [ f ( - 1 ) + 1 ] + γ ,
E s = j N × × ( α ) E 0 e - i ( k R + k · r ) R d v ,
E s = k 2 r e - i k r ( α ) E 0 j N e i ( k - k ) · r j e i ( k - k ) · r 0 d v 0
e i ( k - k ) · r 0 d v 0 = l 2 l 1 e 2 i k Z 0 sin ( β / 2 ) S ( Z 0 ) d Z 0
I = I 0 k 4 r 2 α 2 N [ ( 1 + cos 2 β ) 2 × F 2 ( ρ ) ( 1 + 4 N J 1 2 ( z ) z 2 ) ] ,
j , e N e i ( k - k ) · ( r j - r e ) N ( 1 + 4 N J 1 2 ( k D sin β ) ( k D sin β ) 2 )
g ( f * ) = K ( f * - A ) 3 exp { - [ ( f * - A ) / f ¯ ] 2 } ,