Abstract

The spectral sensitivity of the visual photopigments, the interobserver variability in color judgments, and the spectral locus of unique yellow provide three major problems for accounts of X -chromosomal-linked anomalous trichromacy. According to the single-pigment hypothesis, the primary defect in anomalous trichromacy is a wavelength shift in the peak sensitivity of one of the three visual photopigments. We show that this shift results in reduction of the anomalous trichromat’s r-g opponent chromatic channel. The distribution of response variability in Rayleigh equation match widths due.to factors other than the spectral characteristics of the photopigments is similar in normal and anomalous trichromats. When normal and anomalous trichromats make hue estimations of sets of stimuli designed to contain similar chromatic information, their judgments show similar variability. Calculation of the r-g opponent chromatic channel can provide correct predictions of the spectral loci for unique yellow for anomalous trichromats.

© 1977 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Francescetti, “Die Bedeutung der Einstellungstreite am Anomaloskop für die Diagnose der einzelnen Typen der Farbensinnstörungen nebst Bermerkungen über ihren Vererbungsmodus,” Schweiz. Med. Wschr. 52, 1273–1278 (1928).
  2. W. Jaeger, “Genetics of Congenital Color Deficiencies,” in Handbook of Sensory Physiology Vol. VII/4: Visual Psycho-physics, edited by D. Jameson and L. M. Hurvich (Springer-Verlag, Berlin, 1972), pp. 625–642.
    [CrossRef]
  3. J. von Kries, “Normal and Anomalous Color Systems,” in H. L. F. von Helmholtz, Treatise on Physiological Optics, 3rd ed., Vol. II, translated by J. P. C. Southall, (Optical Society of America, Rochester, N. Y., 1924), pp. 395–425.
  4. D. Jameson and L. M. Hurvich, “Theoretical analysis of anomalous trichromatic color vision,” J. Opt. Soc. Am. 46, 1075–1089 (1956).
    [CrossRef] [PubMed]
  5. L. M. Hurvich and D. Jameson, “Color theory and abnormal red-green vision,” Docum. Ophthal. 16, 409–422 (1962).
    [CrossRef]
  6. L. M. Hurvich, “Color Vision Deficiencies,” in Handbook of Sensory Physiology, Vol. VII/4: Visual Psychophysics, edited by D. Jameson and L. M. Hurvich, (Springer-Verlag, Berlin, 1972), pp. 582–624.
    [CrossRef]
  7. T. P. Piantanida, “A replacement model of X-linked recessive colour vision defects,” Ann. Hum. Genet. (Lond.) 37, 393–404 (1974).
    [CrossRef]
  8. J. J. Vos and P. L. Walraven, “On the derivation of the foveal receptor primaries,” Vision Res. 11, 799–818 (1971).
    [CrossRef] [PubMed]
  9. R. M. Boynton, G. Kandel, and J. W. Onley, “Rapid chromatic adaptation of normal and dichromatic observers,” J. Opt. Soc. Am. 49, 654–666 (1959).
    [CrossRef] [PubMed]
  10. W. A. H. Rushton, “A cone pigment in the protanope,” J. Physiol. Lond. 168, 345–359 (1963);W. A. H. Rushton, “The density of chlorolabe in the foveal cones of the protanope,” ibid. 168, 360–373 (1963).
  11. W. A. H. Rushton, “A foveal pigment in the deuteranope,” J. Physiol. Lond. 176, 24–37 (1965).
  12. D. E. Mitchell and W. A. H. Rushton, “Visual pigments in dichromats,” Vision Res. 11, 1033–1044 (1971);D. E. Mitchell and W. A. H. Rushton, “The red/green pigments of normal vision,” ibid. 11, 1045–1056 (1971).
    [CrossRef] [PubMed]
  13. G. S. Brindley, Physiology of the Retina and the Visual Pathway, 2nd ed. (Williams and Wilkins, Baltimore, 1970).
  14. V. C. Smith and J. Pokorny, “Large-field trichromacy in protanopes and deuteranopes,” J. Opt. Soc. Am. 67, 213–220 (1977).
    [CrossRef] [PubMed]
  15. G. Wyszecki and W. S. Stiles, Color Science (Wiley, New York, 1967).
  16. I. Schmidt, “Some problems related to testing color vision with the Nagel anomaloscope,” J. Opt. Soc. Am. 45, 514–522 (1955).
    [CrossRef] [PubMed]
  17. G. H. M. Waaler, “Über die Erblichkeitsverhältnisse der verschiedenen Arten von angeborener Rotgrünblindheit,” Z. Abstamm. Vererbungsl. 45, 279–283 (1927).
  18. M. P. Willis and D. Farnsworth, “Comparative evaluation of anomaloscopes,” Med. Res. Lab. Rep. No. 190, Bus. Med. Surg. U. S. Navy Dept.Washington, D.C., 1952.
  19. J. Pokorny and V. C. Smith, “Effect of field size on red-green color mixture equations,” J. Opt. Soc. Am. 66, 705–708 (1976).
    [CrossRef] [PubMed]
  20. W. A. H. Rushton, D. S. Powell, and K. D. White, “Exchange thresholds in dichromats,” Vision Res. 13, 1993–2002 (1973);W. A. H. Rushton, D. S. Powell, and K. D. White, “The spectral sensitivity of “red” and “green” cones in the normal eye,” ibid. 13, 2003–2015 (1973);W. A. H. Rushton, D. S. Powell, and K. D. White, “Pigments in anomalous trichromats,” ibid. 13, 2017–2031 (1973).
    [CrossRef] [PubMed]
  21. V. C. Smith, J. Pokorny, and S. J. Starr, “Variability of Color Mixture Data. I. Interobserver variability in the unit coordinates,” Vision Res. 16, 1087–1094 (1976).
    [CrossRef]
  22. H. L. De Vries, “The fundamental response curves of normal and abnormal dichromatic and trichromatic eyes,” Physica (Utr.) 14, 367–380 (1948).
    [CrossRef]
  23. H. Scheibner, “Eine verbandstheoretische Klassification der Protanomalie und Deuteranomalie,” Opt. Acta 21, 489–496 (1974).
    [CrossRef]
  24. G. Wald, “Defective color vision and its inheritance,” Proc. Natl. Acad. Sci. (U.S.) 55, 1347–1362 (1966).
    [CrossRef]
  25. P. L. Walraven, A. M. J. Van Hout, and H. J. Leebeck, “Fundamental response curves of a normal and a deuter anomalous observer derived from chromatic adaptation data,” J. Opt. Soc. Am. 56, 125–127 (1966).
    [CrossRef] [PubMed]
  26. M. Alpern and S. Torii, “The luminosity curve of the pro-tanomalous fovea,” J. Gen. Physiol. 52, 717–737 (1968);M. Alpern and S. Torii, “The luminosity curve of the deuteranomalous fovea,” ibid. 52, 738–749 (1968).
  27. T. P. Piantanida and H. G. Sperling, “Isolation of a third chromatic mechanism in the protanomalous observer,” Vision Res. 13, 2033–2047 (1973);“Isolation of a third chromatic mechanism in the deuteranomalous observer,” ibid. 13, 2049–2058 (1973).
    [CrossRef] [PubMed]
  28. T. P. Piantanida, T. A. Bruch, M. Latch, and F. D. Varner, “Detection of quantum flux modulation by single photopigments in human observers,” Vision Res. 16, 1029–34 (1976).
    [CrossRef] [PubMed]
  29. J. Pokorny, J. D. Moreland, and V. C. Smith, “Photopigments in anomalous trichromats,” J. Opt. Soc. Am. 65, 1522–1524 (1975).
    [CrossRef]
  30. We omit the estimates derived by N. V. Lobanova and N. I. Speranskaya [”The spectral sensitivity of the retinal elements of anomalous trichromats,” Biophysics 6, 71–78 (1961)],who used M. M. Bongard and M. S. Smirnov’s determination of curves for spectral sensitivity of the visual receptors by means of complex curves [see Dokl. Akad. Nauk. SSSR 102, 1111–1114 (1955)].The technique rests on the assumption that for each of the three visual photopigments there exist pairs of spectral wavelengths to which the photopigment is unresponsive. This assumption can only be realized for the SWS visual photopigment.N. I. Speranskaya and N. V. Lobanova’s estimates [”Determination of spectral sensitivity curves of the eyes of normal trichromats,” Biophysics 6, 66–70 (1961)] of the visual photopigments of normal trichromats show substantial disagreement with the König fundamentals proposed by Vos and Walraven (see Ref. 8) and ourselves (see Ref. 58).The proposed Speranskaya and Lobanova normal receptor I (LWS) is displaced about +5 nm and their normal receptor II (MWS) is −5nm from the corresponding estimates of Vos and Walraven (Ref. 8) and ourselves (Ref. 58).
    [PubMed]
  31. D. I. A. Mac Leod and M. M. Hayhoe, “Three pigments in normal and anomalous color vision,” J. Opt. Soc. Am. 64, 92−96 (1974);M. M. Hayhoe and D. I. A. Mac Leod, “A single anomalous photopigment?” ibid. 66, 276−277 (1976).
    [CrossRef]
  32. J. H. Nelson, “Anomalous trichromatism and its relation to normal trichromatism,” Proc. Phys. Soc. Lond. 50, 661−697 (1938).
    [CrossRef]
  33. W. M. Mc Keon and W. D. Wright, “The characteristics of protanomalous vision,” Proc. Phys. Soc. Lond. 52, 464−479 (1940).
    [CrossRef]
  34. V. C. Smith, J. Pokorny, and R. Swartley, “Continuous hue estimation of brief flashes by deuteranomalous observers,” Am. J. Psychol. 86, 115−131 (1973).
    [CrossRef] [PubMed]
  35. R. Lakowski, “Calibration, validation, and population norms for the Pickford-Nicholson anomaloscope,” Brit. J. Physiol. Opt. 26, 166−182 (1971).
  36. J. Helve, “A comparative study of several diagnostic tests of colour vision used for measuring types and degrees of congenital red-green defects,” Acta Ophthal. Suppl. 115, 1−64 (1972).
  37. J. Pokorny, V. C. Smith, and I. Katz, “Derivation of the photopigment absorption spectra in anomalous trichromats,” J. Opt. Soc. Am. 63, 232−237 (1973).
    [CrossRef] [PubMed]
  38. D. Farnsworth, The Farnsworth-Munsell 100-hue test for the examination of Color discrimination (Munsell Color Co., Baltimore, 1957).
  39. G. Verriest, “Further studies on acquired deficiency of color discrimination,” J. Opt. Soc. Am. 53, 185−195 (1963).
    [CrossRef] [PubMed]
  40. R. W. Pickford, “A review of some problems of colour vision and colour blindness,” Adv. Sci. 15, 104–117 (1958).
  41. W. Trendelenberg and I. Schmidt, “Untersuchungen über Vererbung von angeborener Farbenfehlsichtigkeit,” S-B Akad. Wiss. Berlin Phys. Math. K1.13–81 (1935).
  42. H. D. Baker and W. A. H. Rushton, “An analytical anomaloscope,” J. Physiol. Lond. 168, 31P–33P (1963);“The red-sensitive pigment in normal cones,” ibid. 176, 56–72 (1965).
  43. I. Iinuma, “Dyschromatopsia viewed as visual dysfunction glare in color,” Acta Chromatica 3, 10–18 (1976).
  44. M. L. Rubin, “Spectral hue loci of normal and anomalous trichromats,” Am. J. Ophthal. 52, 166–172 (1961).
  45. L. M Hurvich and D. Jameson, “Does anomalous color vision imply color weakness?” Psychon. Sci. 1, 11–12 (1964).
  46. C. E. Sternheim and R. M. Boynton, “Uniqueness of received hues investigated with a continuous judgement technique,” J. Expt. Psychol. 72, 770–776 (1966).
    [CrossRef]
  47. J. H. Parsons, An Introduction to the Study of Colour Vision, 2nd ed. (Cambridge U. P., Cambridge, England, 1924).
  48. A. Linksz, An Essay on Color Vision (Grune and Stratton, New York, 1964).
  49. P. L. Walraven and H. J. Leebeck, “Chromatic Stiles-Crawford effect of anomalous trichromats,” J. Opt. Soc. Am. 52, 836–837 (1962).
    [CrossRef]
  50. J. Voke, “Stiles-Crawford chromatic effect in congenital colour defective observers,” Mod. Prob. Ophthal. 13, 140–144 (1974).
  51. L. M. Hurvich and D. Jameson, “Evaluation of single pigment shifts in anomalous colour vision,” Mod. Probl. Ophthal. 13, 200–209 (1974).
  52. S. L. Guth and H. Lodge, “Heterochromatic additivity, foveal spectral sensitivity, and a new color model,” J. Opt. Soc. Am. 63, 450–462 (1973).
    [CrossRef] [PubMed]
  53. C. R. Ingling, B. H. P. Tsou, and B. A. Drum, “The spectral sensitivity of the opponent-color channels” (unpublished).
  54. A. Chapanis, “Spectral saturation and its relation to color-vision defects,” J. Expt. Psychol. 34, 24–44 (1944).
    [CrossRef]
  55. P. Moon, The Scientific Basis of Illuminating Engineering (Dover, New York, 1961).
  56. S. L. Guth, “Photometric and colorimetric additivity at various intensities,” Proceedings of the First AIC Congress Stockholm1969, pp. 172–180.
  57. L. M. Hurvich and D. Jameson, “Some quantitative aspects of an opponent-colors theory. II. Brightness, saturation and hue in normal and dichromatic vision,” J. Opt. Soc. Am. 45, 602–616 (1955).
    [CrossRef] [PubMed]
  58. V. C. Smith and J. Pokorny, “Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm,” Vision Res. 15, 161–171 (1975).
    [CrossRef] [PubMed]

1977 (1)

1976 (4)

J. Pokorny and V. C. Smith, “Effect of field size on red-green color mixture equations,” J. Opt. Soc. Am. 66, 705–708 (1976).
[CrossRef] [PubMed]

V. C. Smith, J. Pokorny, and S. J. Starr, “Variability of Color Mixture Data. I. Interobserver variability in the unit coordinates,” Vision Res. 16, 1087–1094 (1976).
[CrossRef]

T. P. Piantanida, T. A. Bruch, M. Latch, and F. D. Varner, “Detection of quantum flux modulation by single photopigments in human observers,” Vision Res. 16, 1029–34 (1976).
[CrossRef] [PubMed]

I. Iinuma, “Dyschromatopsia viewed as visual dysfunction glare in color,” Acta Chromatica 3, 10–18 (1976).

1975 (2)

V. C. Smith and J. Pokorny, “Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm,” Vision Res. 15, 161–171 (1975).
[CrossRef] [PubMed]

J. Pokorny, J. D. Moreland, and V. C. Smith, “Photopigments in anomalous trichromats,” J. Opt. Soc. Am. 65, 1522–1524 (1975).
[CrossRef]

1974 (5)

D. I. A. Mac Leod and M. M. Hayhoe, “Three pigments in normal and anomalous color vision,” J. Opt. Soc. Am. 64, 92−96 (1974);M. M. Hayhoe and D. I. A. Mac Leod, “A single anomalous photopigment?” ibid. 66, 276−277 (1976).
[CrossRef]

J. Voke, “Stiles-Crawford chromatic effect in congenital colour defective observers,” Mod. Prob. Ophthal. 13, 140–144 (1974).

L. M. Hurvich and D. Jameson, “Evaluation of single pigment shifts in anomalous colour vision,” Mod. Probl. Ophthal. 13, 200–209 (1974).

H. Scheibner, “Eine verbandstheoretische Klassification der Protanomalie und Deuteranomalie,” Opt. Acta 21, 489–496 (1974).
[CrossRef]

T. P. Piantanida, “A replacement model of X-linked recessive colour vision defects,” Ann. Hum. Genet. (Lond.) 37, 393–404 (1974).
[CrossRef]

1973 (5)

W. A. H. Rushton, D. S. Powell, and K. D. White, “Exchange thresholds in dichromats,” Vision Res. 13, 1993–2002 (1973);W. A. H. Rushton, D. S. Powell, and K. D. White, “The spectral sensitivity of “red” and “green” cones in the normal eye,” ibid. 13, 2003–2015 (1973);W. A. H. Rushton, D. S. Powell, and K. D. White, “Pigments in anomalous trichromats,” ibid. 13, 2017–2031 (1973).
[CrossRef] [PubMed]

T. P. Piantanida and H. G. Sperling, “Isolation of a third chromatic mechanism in the protanomalous observer,” Vision Res. 13, 2033–2047 (1973);“Isolation of a third chromatic mechanism in the deuteranomalous observer,” ibid. 13, 2049–2058 (1973).
[CrossRef] [PubMed]

V. C. Smith, J. Pokorny, and R. Swartley, “Continuous hue estimation of brief flashes by deuteranomalous observers,” Am. J. Psychol. 86, 115−131 (1973).
[CrossRef] [PubMed]

J. Pokorny, V. C. Smith, and I. Katz, “Derivation of the photopigment absorption spectra in anomalous trichromats,” J. Opt. Soc. Am. 63, 232−237 (1973).
[CrossRef] [PubMed]

S. L. Guth and H. Lodge, “Heterochromatic additivity, foveal spectral sensitivity, and a new color model,” J. Opt. Soc. Am. 63, 450–462 (1973).
[CrossRef] [PubMed]

1972 (1)

J. Helve, “A comparative study of several diagnostic tests of colour vision used for measuring types and degrees of congenital red-green defects,” Acta Ophthal. Suppl. 115, 1−64 (1972).

1971 (3)

R. Lakowski, “Calibration, validation, and population norms for the Pickford-Nicholson anomaloscope,” Brit. J. Physiol. Opt. 26, 166−182 (1971).

J. J. Vos and P. L. Walraven, “On the derivation of the foveal receptor primaries,” Vision Res. 11, 799–818 (1971).
[CrossRef] [PubMed]

D. E. Mitchell and W. A. H. Rushton, “Visual pigments in dichromats,” Vision Res. 11, 1033–1044 (1971);D. E. Mitchell and W. A. H. Rushton, “The red/green pigments of normal vision,” ibid. 11, 1045–1056 (1971).
[CrossRef] [PubMed]

1969 (1)

S. L. Guth, “Photometric and colorimetric additivity at various intensities,” Proceedings of the First AIC Congress Stockholm1969, pp. 172–180.

1968 (1)

M. Alpern and S. Torii, “The luminosity curve of the pro-tanomalous fovea,” J. Gen. Physiol. 52, 717–737 (1968);M. Alpern and S. Torii, “The luminosity curve of the deuteranomalous fovea,” ibid. 52, 738–749 (1968).

1966 (3)

G. Wald, “Defective color vision and its inheritance,” Proc. Natl. Acad. Sci. (U.S.) 55, 1347–1362 (1966).
[CrossRef]

C. E. Sternheim and R. M. Boynton, “Uniqueness of received hues investigated with a continuous judgement technique,” J. Expt. Psychol. 72, 770–776 (1966).
[CrossRef]

P. L. Walraven, A. M. J. Van Hout, and H. J. Leebeck, “Fundamental response curves of a normal and a deuter anomalous observer derived from chromatic adaptation data,” J. Opt. Soc. Am. 56, 125–127 (1966).
[CrossRef] [PubMed]

1965 (1)

W. A. H. Rushton, “A foveal pigment in the deuteranope,” J. Physiol. Lond. 176, 24–37 (1965).

1964 (1)

L. M Hurvich and D. Jameson, “Does anomalous color vision imply color weakness?” Psychon. Sci. 1, 11–12 (1964).

1963 (3)

H. D. Baker and W. A. H. Rushton, “An analytical anomaloscope,” J. Physiol. Lond. 168, 31P–33P (1963);“The red-sensitive pigment in normal cones,” ibid. 176, 56–72 (1965).

W. A. H. Rushton, “A cone pigment in the protanope,” J. Physiol. Lond. 168, 345–359 (1963);W. A. H. Rushton, “The density of chlorolabe in the foveal cones of the protanope,” ibid. 168, 360–373 (1963).

G. Verriest, “Further studies on acquired deficiency of color discrimination,” J. Opt. Soc. Am. 53, 185−195 (1963).
[CrossRef] [PubMed]

1962 (2)

P. L. Walraven and H. J. Leebeck, “Chromatic Stiles-Crawford effect of anomalous trichromats,” J. Opt. Soc. Am. 52, 836–837 (1962).
[CrossRef]

L. M. Hurvich and D. Jameson, “Color theory and abnormal red-green vision,” Docum. Ophthal. 16, 409–422 (1962).
[CrossRef]

1961 (2)

M. L. Rubin, “Spectral hue loci of normal and anomalous trichromats,” Am. J. Ophthal. 52, 166–172 (1961).

We omit the estimates derived by N. V. Lobanova and N. I. Speranskaya [”The spectral sensitivity of the retinal elements of anomalous trichromats,” Biophysics 6, 71–78 (1961)],who used M. M. Bongard and M. S. Smirnov’s determination of curves for spectral sensitivity of the visual receptors by means of complex curves [see Dokl. Akad. Nauk. SSSR 102, 1111–1114 (1955)].The technique rests on the assumption that for each of the three visual photopigments there exist pairs of spectral wavelengths to which the photopigment is unresponsive. This assumption can only be realized for the SWS visual photopigment.N. I. Speranskaya and N. V. Lobanova’s estimates [”Determination of spectral sensitivity curves of the eyes of normal trichromats,” Biophysics 6, 66–70 (1961)] of the visual photopigments of normal trichromats show substantial disagreement with the König fundamentals proposed by Vos and Walraven (see Ref. 8) and ourselves (see Ref. 58).The proposed Speranskaya and Lobanova normal receptor I (LWS) is displaced about +5 nm and their normal receptor II (MWS) is −5nm from the corresponding estimates of Vos and Walraven (Ref. 8) and ourselves (Ref. 58).
[PubMed]

1959 (1)

1958 (1)

R. W. Pickford, “A review of some problems of colour vision and colour blindness,” Adv. Sci. 15, 104–117 (1958).

1956 (1)

1955 (2)

1948 (1)

H. L. De Vries, “The fundamental response curves of normal and abnormal dichromatic and trichromatic eyes,” Physica (Utr.) 14, 367–380 (1948).
[CrossRef]

1944 (1)

A. Chapanis, “Spectral saturation and its relation to color-vision defects,” J. Expt. Psychol. 34, 24–44 (1944).
[CrossRef]

1940 (1)

W. M. Mc Keon and W. D. Wright, “The characteristics of protanomalous vision,” Proc. Phys. Soc. Lond. 52, 464−479 (1940).
[CrossRef]

1938 (1)

J. H. Nelson, “Anomalous trichromatism and its relation to normal trichromatism,” Proc. Phys. Soc. Lond. 50, 661−697 (1938).
[CrossRef]

1935 (1)

W. Trendelenberg and I. Schmidt, “Untersuchungen über Vererbung von angeborener Farbenfehlsichtigkeit,” S-B Akad. Wiss. Berlin Phys. Math. K1.13–81 (1935).

1928 (1)

A. Francescetti, “Die Bedeutung der Einstellungstreite am Anomaloskop für die Diagnose der einzelnen Typen der Farbensinnstörungen nebst Bermerkungen über ihren Vererbungsmodus,” Schweiz. Med. Wschr. 52, 1273–1278 (1928).

1927 (1)

G. H. M. Waaler, “Über die Erblichkeitsverhältnisse der verschiedenen Arten von angeborener Rotgrünblindheit,” Z. Abstamm. Vererbungsl. 45, 279–283 (1927).

Alpern, M.

M. Alpern and S. Torii, “The luminosity curve of the pro-tanomalous fovea,” J. Gen. Physiol. 52, 717–737 (1968);M. Alpern and S. Torii, “The luminosity curve of the deuteranomalous fovea,” ibid. 52, 738–749 (1968).

Baker, H. D.

H. D. Baker and W. A. H. Rushton, “An analytical anomaloscope,” J. Physiol. Lond. 168, 31P–33P (1963);“The red-sensitive pigment in normal cones,” ibid. 176, 56–72 (1965).

Boynton, R. M.

C. E. Sternheim and R. M. Boynton, “Uniqueness of received hues investigated with a continuous judgement technique,” J. Expt. Psychol. 72, 770–776 (1966).
[CrossRef]

R. M. Boynton, G. Kandel, and J. W. Onley, “Rapid chromatic adaptation of normal and dichromatic observers,” J. Opt. Soc. Am. 49, 654–666 (1959).
[CrossRef] [PubMed]

Brindley, G. S.

G. S. Brindley, Physiology of the Retina and the Visual Pathway, 2nd ed. (Williams and Wilkins, Baltimore, 1970).

Bruch, T. A.

T. P. Piantanida, T. A. Bruch, M. Latch, and F. D. Varner, “Detection of quantum flux modulation by single photopigments in human observers,” Vision Res. 16, 1029–34 (1976).
[CrossRef] [PubMed]

Chapanis, A.

A. Chapanis, “Spectral saturation and its relation to color-vision defects,” J. Expt. Psychol. 34, 24–44 (1944).
[CrossRef]

De Vries, H. L.

H. L. De Vries, “The fundamental response curves of normal and abnormal dichromatic and trichromatic eyes,” Physica (Utr.) 14, 367–380 (1948).
[CrossRef]

Drum, B. A.

C. R. Ingling, B. H. P. Tsou, and B. A. Drum, “The spectral sensitivity of the opponent-color channels” (unpublished).

Farnsworth, D.

D. Farnsworth, The Farnsworth-Munsell 100-hue test for the examination of Color discrimination (Munsell Color Co., Baltimore, 1957).

M. P. Willis and D. Farnsworth, “Comparative evaluation of anomaloscopes,” Med. Res. Lab. Rep. No. 190, Bus. Med. Surg. U. S. Navy Dept.Washington, D.C., 1952.

Francescetti, A.

A. Francescetti, “Die Bedeutung der Einstellungstreite am Anomaloskop für die Diagnose der einzelnen Typen der Farbensinnstörungen nebst Bermerkungen über ihren Vererbungsmodus,” Schweiz. Med. Wschr. 52, 1273–1278 (1928).

Guth, S. L.

S. L. Guth and H. Lodge, “Heterochromatic additivity, foveal spectral sensitivity, and a new color model,” J. Opt. Soc. Am. 63, 450–462 (1973).
[CrossRef] [PubMed]

S. L. Guth, “Photometric and colorimetric additivity at various intensities,” Proceedings of the First AIC Congress Stockholm1969, pp. 172–180.

Hayhoe, M. M.

Helve, J.

J. Helve, “A comparative study of several diagnostic tests of colour vision used for measuring types and degrees of congenital red-green defects,” Acta Ophthal. Suppl. 115, 1−64 (1972).

Hurvich, L. M

L. M Hurvich and D. Jameson, “Does anomalous color vision imply color weakness?” Psychon. Sci. 1, 11–12 (1964).

Hurvich, L. M.

L. M. Hurvich and D. Jameson, “Evaluation of single pigment shifts in anomalous colour vision,” Mod. Probl. Ophthal. 13, 200–209 (1974).

L. M. Hurvich and D. Jameson, “Color theory and abnormal red-green vision,” Docum. Ophthal. 16, 409–422 (1962).
[CrossRef]

D. Jameson and L. M. Hurvich, “Theoretical analysis of anomalous trichromatic color vision,” J. Opt. Soc. Am. 46, 1075–1089 (1956).
[CrossRef] [PubMed]

L. M. Hurvich and D. Jameson, “Some quantitative aspects of an opponent-colors theory. II. Brightness, saturation and hue in normal and dichromatic vision,” J. Opt. Soc. Am. 45, 602–616 (1955).
[CrossRef] [PubMed]

L. M. Hurvich, “Color Vision Deficiencies,” in Handbook of Sensory Physiology, Vol. VII/4: Visual Psychophysics, edited by D. Jameson and L. M. Hurvich, (Springer-Verlag, Berlin, 1972), pp. 582–624.
[CrossRef]

Iinuma, I.

I. Iinuma, “Dyschromatopsia viewed as visual dysfunction glare in color,” Acta Chromatica 3, 10–18 (1976).

Ingling, C. R.

C. R. Ingling, B. H. P. Tsou, and B. A. Drum, “The spectral sensitivity of the opponent-color channels” (unpublished).

Jaeger, W.

W. Jaeger, “Genetics of Congenital Color Deficiencies,” in Handbook of Sensory Physiology Vol. VII/4: Visual Psycho-physics, edited by D. Jameson and L. M. Hurvich (Springer-Verlag, Berlin, 1972), pp. 625–642.
[CrossRef]

Jameson, D.

L. M. Hurvich and D. Jameson, “Evaluation of single pigment shifts in anomalous colour vision,” Mod. Probl. Ophthal. 13, 200–209 (1974).

L. M Hurvich and D. Jameson, “Does anomalous color vision imply color weakness?” Psychon. Sci. 1, 11–12 (1964).

L. M. Hurvich and D. Jameson, “Color theory and abnormal red-green vision,” Docum. Ophthal. 16, 409–422 (1962).
[CrossRef]

D. Jameson and L. M. Hurvich, “Theoretical analysis of anomalous trichromatic color vision,” J. Opt. Soc. Am. 46, 1075–1089 (1956).
[CrossRef] [PubMed]

L. M. Hurvich and D. Jameson, “Some quantitative aspects of an opponent-colors theory. II. Brightness, saturation and hue in normal and dichromatic vision,” J. Opt. Soc. Am. 45, 602–616 (1955).
[CrossRef] [PubMed]

Kandel, G.

Katz, I.

Lakowski, R.

R. Lakowski, “Calibration, validation, and population norms for the Pickford-Nicholson anomaloscope,” Brit. J. Physiol. Opt. 26, 166−182 (1971).

Latch, M.

T. P. Piantanida, T. A. Bruch, M. Latch, and F. D. Varner, “Detection of quantum flux modulation by single photopigments in human observers,” Vision Res. 16, 1029–34 (1976).
[CrossRef] [PubMed]

Leebeck, H. J.

Linksz, A.

A. Linksz, An Essay on Color Vision (Grune and Stratton, New York, 1964).

Lobanova, N. V.

We omit the estimates derived by N. V. Lobanova and N. I. Speranskaya [”The spectral sensitivity of the retinal elements of anomalous trichromats,” Biophysics 6, 71–78 (1961)],who used M. M. Bongard and M. S. Smirnov’s determination of curves for spectral sensitivity of the visual receptors by means of complex curves [see Dokl. Akad. Nauk. SSSR 102, 1111–1114 (1955)].The technique rests on the assumption that for each of the three visual photopigments there exist pairs of spectral wavelengths to which the photopigment is unresponsive. This assumption can only be realized for the SWS visual photopigment.N. I. Speranskaya and N. V. Lobanova’s estimates [”Determination of spectral sensitivity curves of the eyes of normal trichromats,” Biophysics 6, 66–70 (1961)] of the visual photopigments of normal trichromats show substantial disagreement with the König fundamentals proposed by Vos and Walraven (see Ref. 8) and ourselves (see Ref. 58).The proposed Speranskaya and Lobanova normal receptor I (LWS) is displaced about +5 nm and their normal receptor II (MWS) is −5nm from the corresponding estimates of Vos and Walraven (Ref. 8) and ourselves (Ref. 58).
[PubMed]

Lodge, H.

Mac Leod, D. I. A.

Mc Keon, W. M.

W. M. Mc Keon and W. D. Wright, “The characteristics of protanomalous vision,” Proc. Phys. Soc. Lond. 52, 464−479 (1940).
[CrossRef]

Mitchell, D. E.

D. E. Mitchell and W. A. H. Rushton, “Visual pigments in dichromats,” Vision Res. 11, 1033–1044 (1971);D. E. Mitchell and W. A. H. Rushton, “The red/green pigments of normal vision,” ibid. 11, 1045–1056 (1971).
[CrossRef] [PubMed]

Moon, P.

P. Moon, The Scientific Basis of Illuminating Engineering (Dover, New York, 1961).

Moreland, J. D.

Nelson, J. H.

J. H. Nelson, “Anomalous trichromatism and its relation to normal trichromatism,” Proc. Phys. Soc. Lond. 50, 661−697 (1938).
[CrossRef]

Onley, J. W.

Parsons, J. H.

J. H. Parsons, An Introduction to the Study of Colour Vision, 2nd ed. (Cambridge U. P., Cambridge, England, 1924).

Piantanida, T. P.

T. P. Piantanida, T. A. Bruch, M. Latch, and F. D. Varner, “Detection of quantum flux modulation by single photopigments in human observers,” Vision Res. 16, 1029–34 (1976).
[CrossRef] [PubMed]

T. P. Piantanida, “A replacement model of X-linked recessive colour vision defects,” Ann. Hum. Genet. (Lond.) 37, 393–404 (1974).
[CrossRef]

T. P. Piantanida and H. G. Sperling, “Isolation of a third chromatic mechanism in the protanomalous observer,” Vision Res. 13, 2033–2047 (1973);“Isolation of a third chromatic mechanism in the deuteranomalous observer,” ibid. 13, 2049–2058 (1973).
[CrossRef] [PubMed]

Pickford, R. W.

R. W. Pickford, “A review of some problems of colour vision and colour blindness,” Adv. Sci. 15, 104–117 (1958).

Pokorny, J.

V. C. Smith and J. Pokorny, “Large-field trichromacy in protanopes and deuteranopes,” J. Opt. Soc. Am. 67, 213–220 (1977).
[CrossRef] [PubMed]

V. C. Smith, J. Pokorny, and S. J. Starr, “Variability of Color Mixture Data. I. Interobserver variability in the unit coordinates,” Vision Res. 16, 1087–1094 (1976).
[CrossRef]

J. Pokorny and V. C. Smith, “Effect of field size on red-green color mixture equations,” J. Opt. Soc. Am. 66, 705–708 (1976).
[CrossRef] [PubMed]

J. Pokorny, J. D. Moreland, and V. C. Smith, “Photopigments in anomalous trichromats,” J. Opt. Soc. Am. 65, 1522–1524 (1975).
[CrossRef]

V. C. Smith and J. Pokorny, “Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm,” Vision Res. 15, 161–171 (1975).
[CrossRef] [PubMed]

V. C. Smith, J. Pokorny, and R. Swartley, “Continuous hue estimation of brief flashes by deuteranomalous observers,” Am. J. Psychol. 86, 115−131 (1973).
[CrossRef] [PubMed]

J. Pokorny, V. C. Smith, and I. Katz, “Derivation of the photopigment absorption spectra in anomalous trichromats,” J. Opt. Soc. Am. 63, 232−237 (1973).
[CrossRef] [PubMed]

Powell, D. S.

W. A. H. Rushton, D. S. Powell, and K. D. White, “Exchange thresholds in dichromats,” Vision Res. 13, 1993–2002 (1973);W. A. H. Rushton, D. S. Powell, and K. D. White, “The spectral sensitivity of “red” and “green” cones in the normal eye,” ibid. 13, 2003–2015 (1973);W. A. H. Rushton, D. S. Powell, and K. D. White, “Pigments in anomalous trichromats,” ibid. 13, 2017–2031 (1973).
[CrossRef] [PubMed]

Rubin, M. L.

M. L. Rubin, “Spectral hue loci of normal and anomalous trichromats,” Am. J. Ophthal. 52, 166–172 (1961).

Rushton, W. A. H.

W. A. H. Rushton, D. S. Powell, and K. D. White, “Exchange thresholds in dichromats,” Vision Res. 13, 1993–2002 (1973);W. A. H. Rushton, D. S. Powell, and K. D. White, “The spectral sensitivity of “red” and “green” cones in the normal eye,” ibid. 13, 2003–2015 (1973);W. A. H. Rushton, D. S. Powell, and K. D. White, “Pigments in anomalous trichromats,” ibid. 13, 2017–2031 (1973).
[CrossRef] [PubMed]

D. E. Mitchell and W. A. H. Rushton, “Visual pigments in dichromats,” Vision Res. 11, 1033–1044 (1971);D. E. Mitchell and W. A. H. Rushton, “The red/green pigments of normal vision,” ibid. 11, 1045–1056 (1971).
[CrossRef] [PubMed]

W. A. H. Rushton, “A foveal pigment in the deuteranope,” J. Physiol. Lond. 176, 24–37 (1965).

W. A. H. Rushton, “A cone pigment in the protanope,” J. Physiol. Lond. 168, 345–359 (1963);W. A. H. Rushton, “The density of chlorolabe in the foveal cones of the protanope,” ibid. 168, 360–373 (1963).

H. D. Baker and W. A. H. Rushton, “An analytical anomaloscope,” J. Physiol. Lond. 168, 31P–33P (1963);“The red-sensitive pigment in normal cones,” ibid. 176, 56–72 (1965).

Scheibner, H.

H. Scheibner, “Eine verbandstheoretische Klassification der Protanomalie und Deuteranomalie,” Opt. Acta 21, 489–496 (1974).
[CrossRef]

Schmidt, I.

I. Schmidt, “Some problems related to testing color vision with the Nagel anomaloscope,” J. Opt. Soc. Am. 45, 514–522 (1955).
[CrossRef] [PubMed]

W. Trendelenberg and I. Schmidt, “Untersuchungen über Vererbung von angeborener Farbenfehlsichtigkeit,” S-B Akad. Wiss. Berlin Phys. Math. K1.13–81 (1935).

Smith, V. C.

V. C. Smith and J. Pokorny, “Large-field trichromacy in protanopes and deuteranopes,” J. Opt. Soc. Am. 67, 213–220 (1977).
[CrossRef] [PubMed]

J. Pokorny and V. C. Smith, “Effect of field size on red-green color mixture equations,” J. Opt. Soc. Am. 66, 705–708 (1976).
[CrossRef] [PubMed]

V. C. Smith, J. Pokorny, and S. J. Starr, “Variability of Color Mixture Data. I. Interobserver variability in the unit coordinates,” Vision Res. 16, 1087–1094 (1976).
[CrossRef]

V. C. Smith and J. Pokorny, “Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm,” Vision Res. 15, 161–171 (1975).
[CrossRef] [PubMed]

J. Pokorny, J. D. Moreland, and V. C. Smith, “Photopigments in anomalous trichromats,” J. Opt. Soc. Am. 65, 1522–1524 (1975).
[CrossRef]

V. C. Smith, J. Pokorny, and R. Swartley, “Continuous hue estimation of brief flashes by deuteranomalous observers,” Am. J. Psychol. 86, 115−131 (1973).
[CrossRef] [PubMed]

J. Pokorny, V. C. Smith, and I. Katz, “Derivation of the photopigment absorption spectra in anomalous trichromats,” J. Opt. Soc. Am. 63, 232−237 (1973).
[CrossRef] [PubMed]

Speranskaya, N. I.

We omit the estimates derived by N. V. Lobanova and N. I. Speranskaya [”The spectral sensitivity of the retinal elements of anomalous trichromats,” Biophysics 6, 71–78 (1961)],who used M. M. Bongard and M. S. Smirnov’s determination of curves for spectral sensitivity of the visual receptors by means of complex curves [see Dokl. Akad. Nauk. SSSR 102, 1111–1114 (1955)].The technique rests on the assumption that for each of the three visual photopigments there exist pairs of spectral wavelengths to which the photopigment is unresponsive. This assumption can only be realized for the SWS visual photopigment.N. I. Speranskaya and N. V. Lobanova’s estimates [”Determination of spectral sensitivity curves of the eyes of normal trichromats,” Biophysics 6, 66–70 (1961)] of the visual photopigments of normal trichromats show substantial disagreement with the König fundamentals proposed by Vos and Walraven (see Ref. 8) and ourselves (see Ref. 58).The proposed Speranskaya and Lobanova normal receptor I (LWS) is displaced about +5 nm and their normal receptor II (MWS) is −5nm from the corresponding estimates of Vos and Walraven (Ref. 8) and ourselves (Ref. 58).
[PubMed]

Sperling, H. G.

T. P. Piantanida and H. G. Sperling, “Isolation of a third chromatic mechanism in the protanomalous observer,” Vision Res. 13, 2033–2047 (1973);“Isolation of a third chromatic mechanism in the deuteranomalous observer,” ibid. 13, 2049–2058 (1973).
[CrossRef] [PubMed]

Starr, S. J.

V. C. Smith, J. Pokorny, and S. J. Starr, “Variability of Color Mixture Data. I. Interobserver variability in the unit coordinates,” Vision Res. 16, 1087–1094 (1976).
[CrossRef]

Sternheim, C. E.

C. E. Sternheim and R. M. Boynton, “Uniqueness of received hues investigated with a continuous judgement technique,” J. Expt. Psychol. 72, 770–776 (1966).
[CrossRef]

Stiles, W. S.

G. Wyszecki and W. S. Stiles, Color Science (Wiley, New York, 1967).

Swartley, R.

V. C. Smith, J. Pokorny, and R. Swartley, “Continuous hue estimation of brief flashes by deuteranomalous observers,” Am. J. Psychol. 86, 115−131 (1973).
[CrossRef] [PubMed]

Torii, S.

M. Alpern and S. Torii, “The luminosity curve of the pro-tanomalous fovea,” J. Gen. Physiol. 52, 717–737 (1968);M. Alpern and S. Torii, “The luminosity curve of the deuteranomalous fovea,” ibid. 52, 738–749 (1968).

Trendelenberg, W.

W. Trendelenberg and I. Schmidt, “Untersuchungen über Vererbung von angeborener Farbenfehlsichtigkeit,” S-B Akad. Wiss. Berlin Phys. Math. K1.13–81 (1935).

Tsou, B. H. P.

C. R. Ingling, B. H. P. Tsou, and B. A. Drum, “The spectral sensitivity of the opponent-color channels” (unpublished).

Van Hout, A. M. J.

Varner, F. D.

T. P. Piantanida, T. A. Bruch, M. Latch, and F. D. Varner, “Detection of quantum flux modulation by single photopigments in human observers,” Vision Res. 16, 1029–34 (1976).
[CrossRef] [PubMed]

Verriest, G.

Voke, J.

J. Voke, “Stiles-Crawford chromatic effect in congenital colour defective observers,” Mod. Prob. Ophthal. 13, 140–144 (1974).

von Helmholtz, H. L. F.

J. von Kries, “Normal and Anomalous Color Systems,” in H. L. F. von Helmholtz, Treatise on Physiological Optics, 3rd ed., Vol. II, translated by J. P. C. Southall, (Optical Society of America, Rochester, N. Y., 1924), pp. 395–425.

von Kries, J.

J. von Kries, “Normal and Anomalous Color Systems,” in H. L. F. von Helmholtz, Treatise on Physiological Optics, 3rd ed., Vol. II, translated by J. P. C. Southall, (Optical Society of America, Rochester, N. Y., 1924), pp. 395–425.

Vos, J. J.

J. J. Vos and P. L. Walraven, “On the derivation of the foveal receptor primaries,” Vision Res. 11, 799–818 (1971).
[CrossRef] [PubMed]

Waaler, G. H. M.

G. H. M. Waaler, “Über die Erblichkeitsverhältnisse der verschiedenen Arten von angeborener Rotgrünblindheit,” Z. Abstamm. Vererbungsl. 45, 279–283 (1927).

Wald, G.

G. Wald, “Defective color vision and its inheritance,” Proc. Natl. Acad. Sci. (U.S.) 55, 1347–1362 (1966).
[CrossRef]

Walraven, P. L.

White, K. D.

W. A. H. Rushton, D. S. Powell, and K. D. White, “Exchange thresholds in dichromats,” Vision Res. 13, 1993–2002 (1973);W. A. H. Rushton, D. S. Powell, and K. D. White, “The spectral sensitivity of “red” and “green” cones in the normal eye,” ibid. 13, 2003–2015 (1973);W. A. H. Rushton, D. S. Powell, and K. D. White, “Pigments in anomalous trichromats,” ibid. 13, 2017–2031 (1973).
[CrossRef] [PubMed]

Willis, M. P.

M. P. Willis and D. Farnsworth, “Comparative evaluation of anomaloscopes,” Med. Res. Lab. Rep. No. 190, Bus. Med. Surg. U. S. Navy Dept.Washington, D.C., 1952.

Wright, W. D.

W. M. Mc Keon and W. D. Wright, “The characteristics of protanomalous vision,” Proc. Phys. Soc. Lond. 52, 464−479 (1940).
[CrossRef]

Wyszecki, G.

G. Wyszecki and W. S. Stiles, Color Science (Wiley, New York, 1967).

Acta Chromatica (1)

I. Iinuma, “Dyschromatopsia viewed as visual dysfunction glare in color,” Acta Chromatica 3, 10–18 (1976).

Acta Ophthal. Suppl. (1)

J. Helve, “A comparative study of several diagnostic tests of colour vision used for measuring types and degrees of congenital red-green defects,” Acta Ophthal. Suppl. 115, 1−64 (1972).

Adv. Sci. (1)

R. W. Pickford, “A review of some problems of colour vision and colour blindness,” Adv. Sci. 15, 104–117 (1958).

Am. J. Ophthal. (1)

M. L. Rubin, “Spectral hue loci of normal and anomalous trichromats,” Am. J. Ophthal. 52, 166–172 (1961).

Am. J. Psychol. (1)

V. C. Smith, J. Pokorny, and R. Swartley, “Continuous hue estimation of brief flashes by deuteranomalous observers,” Am. J. Psychol. 86, 115−131 (1973).
[CrossRef] [PubMed]

Ann. Hum. Genet. (Lond.) (1)

T. P. Piantanida, “A replacement model of X-linked recessive colour vision defects,” Ann. Hum. Genet. (Lond.) 37, 393–404 (1974).
[CrossRef]

Biophysics (1)

We omit the estimates derived by N. V. Lobanova and N. I. Speranskaya [”The spectral sensitivity of the retinal elements of anomalous trichromats,” Biophysics 6, 71–78 (1961)],who used M. M. Bongard and M. S. Smirnov’s determination of curves for spectral sensitivity of the visual receptors by means of complex curves [see Dokl. Akad. Nauk. SSSR 102, 1111–1114 (1955)].The technique rests on the assumption that for each of the three visual photopigments there exist pairs of spectral wavelengths to which the photopigment is unresponsive. This assumption can only be realized for the SWS visual photopigment.N. I. Speranskaya and N. V. Lobanova’s estimates [”Determination of spectral sensitivity curves of the eyes of normal trichromats,” Biophysics 6, 66–70 (1961)] of the visual photopigments of normal trichromats show substantial disagreement with the König fundamentals proposed by Vos and Walraven (see Ref. 8) and ourselves (see Ref. 58).The proposed Speranskaya and Lobanova normal receptor I (LWS) is displaced about +5 nm and their normal receptor II (MWS) is −5nm from the corresponding estimates of Vos and Walraven (Ref. 8) and ourselves (Ref. 58).
[PubMed]

Brit. J. Physiol. Opt. (1)

R. Lakowski, “Calibration, validation, and population norms for the Pickford-Nicholson anomaloscope,” Brit. J. Physiol. Opt. 26, 166−182 (1971).

Docum. Ophthal. (1)

L. M. Hurvich and D. Jameson, “Color theory and abnormal red-green vision,” Docum. Ophthal. 16, 409–422 (1962).
[CrossRef]

J. Expt. Psychol. (2)

C. E. Sternheim and R. M. Boynton, “Uniqueness of received hues investigated with a continuous judgement technique,” J. Expt. Psychol. 72, 770–776 (1966).
[CrossRef]

A. Chapanis, “Spectral saturation and its relation to color-vision defects,” J. Expt. Psychol. 34, 24–44 (1944).
[CrossRef]

J. Gen. Physiol. (1)

M. Alpern and S. Torii, “The luminosity curve of the pro-tanomalous fovea,” J. Gen. Physiol. 52, 717–737 (1968);M. Alpern and S. Torii, “The luminosity curve of the deuteranomalous fovea,” ibid. 52, 738–749 (1968).

J. Opt. Soc. Am. (13)

I. Schmidt, “Some problems related to testing color vision with the Nagel anomaloscope,” J. Opt. Soc. Am. 45, 514–522 (1955).
[CrossRef] [PubMed]

L. M. Hurvich and D. Jameson, “Some quantitative aspects of an opponent-colors theory. II. Brightness, saturation and hue in normal and dichromatic vision,” J. Opt. Soc. Am. 45, 602–616 (1955).
[CrossRef] [PubMed]

D. Jameson and L. M. Hurvich, “Theoretical analysis of anomalous trichromatic color vision,” J. Opt. Soc. Am. 46, 1075–1089 (1956).
[CrossRef] [PubMed]

R. M. Boynton, G. Kandel, and J. W. Onley, “Rapid chromatic adaptation of normal and dichromatic observers,” J. Opt. Soc. Am. 49, 654–666 (1959).
[CrossRef] [PubMed]

J. Pokorny, V. C. Smith, and I. Katz, “Derivation of the photopigment absorption spectra in anomalous trichromats,” J. Opt. Soc. Am. 63, 232−237 (1973).
[CrossRef] [PubMed]

S. L. Guth and H. Lodge, “Heterochromatic additivity, foveal spectral sensitivity, and a new color model,” J. Opt. Soc. Am. 63, 450–462 (1973).
[CrossRef] [PubMed]

D. I. A. Mac Leod and M. M. Hayhoe, “Three pigments in normal and anomalous color vision,” J. Opt. Soc. Am. 64, 92−96 (1974);M. M. Hayhoe and D. I. A. Mac Leod, “A single anomalous photopigment?” ibid. 66, 276−277 (1976).
[CrossRef]

J. Pokorny and V. C. Smith, “Effect of field size on red-green color mixture equations,” J. Opt. Soc. Am. 66, 705–708 (1976).
[CrossRef] [PubMed]

V. C. Smith and J. Pokorny, “Large-field trichromacy in protanopes and deuteranopes,” J. Opt. Soc. Am. 67, 213–220 (1977).
[CrossRef] [PubMed]

G. Verriest, “Further studies on acquired deficiency of color discrimination,” J. Opt. Soc. Am. 53, 185−195 (1963).
[CrossRef] [PubMed]

P. L. Walraven and H. J. Leebeck, “Chromatic Stiles-Crawford effect of anomalous trichromats,” J. Opt. Soc. Am. 52, 836–837 (1962).
[CrossRef]

J. Pokorny, J. D. Moreland, and V. C. Smith, “Photopigments in anomalous trichromats,” J. Opt. Soc. Am. 65, 1522–1524 (1975).
[CrossRef]

P. L. Walraven, A. M. J. Van Hout, and H. J. Leebeck, “Fundamental response curves of a normal and a deuter anomalous observer derived from chromatic adaptation data,” J. Opt. Soc. Am. 56, 125–127 (1966).
[CrossRef] [PubMed]

J. Physiol. Lond. (3)

H. D. Baker and W. A. H. Rushton, “An analytical anomaloscope,” J. Physiol. Lond. 168, 31P–33P (1963);“The red-sensitive pigment in normal cones,” ibid. 176, 56–72 (1965).

W. A. H. Rushton, “A cone pigment in the protanope,” J. Physiol. Lond. 168, 345–359 (1963);W. A. H. Rushton, “The density of chlorolabe in the foveal cones of the protanope,” ibid. 168, 360–373 (1963).

W. A. H. Rushton, “A foveal pigment in the deuteranope,” J. Physiol. Lond. 176, 24–37 (1965).

Mod. Prob. Ophthal. (1)

J. Voke, “Stiles-Crawford chromatic effect in congenital colour defective observers,” Mod. Prob. Ophthal. 13, 140–144 (1974).

Mod. Probl. Ophthal. (1)

L. M. Hurvich and D. Jameson, “Evaluation of single pigment shifts in anomalous colour vision,” Mod. Probl. Ophthal. 13, 200–209 (1974).

Opt. Acta (1)

H. Scheibner, “Eine verbandstheoretische Klassification der Protanomalie und Deuteranomalie,” Opt. Acta 21, 489–496 (1974).
[CrossRef]

Physica (Utr.) (1)

H. L. De Vries, “The fundamental response curves of normal and abnormal dichromatic and trichromatic eyes,” Physica (Utr.) 14, 367–380 (1948).
[CrossRef]

Proc. Natl. Acad. Sci. (U.S.) (1)

G. Wald, “Defective color vision and its inheritance,” Proc. Natl. Acad. Sci. (U.S.) 55, 1347–1362 (1966).
[CrossRef]

Proc. Phys. Soc. Lond. (2)

J. H. Nelson, “Anomalous trichromatism and its relation to normal trichromatism,” Proc. Phys. Soc. Lond. 50, 661−697 (1938).
[CrossRef]

W. M. Mc Keon and W. D. Wright, “The characteristics of protanomalous vision,” Proc. Phys. Soc. Lond. 52, 464−479 (1940).
[CrossRef]

Proceedings of the First AIC Congress Stockholm (1)

S. L. Guth, “Photometric and colorimetric additivity at various intensities,” Proceedings of the First AIC Congress Stockholm1969, pp. 172–180.

Psychon. Sci. (1)

L. M Hurvich and D. Jameson, “Does anomalous color vision imply color weakness?” Psychon. Sci. 1, 11–12 (1964).

S-B Akad. Wiss. Berlin Phys. Math. K1. (1)

W. Trendelenberg and I. Schmidt, “Untersuchungen über Vererbung von angeborener Farbenfehlsichtigkeit,” S-B Akad. Wiss. Berlin Phys. Math. K1.13–81 (1935).

Schweiz. Med. Wschr. (1)

A. Francescetti, “Die Bedeutung der Einstellungstreite am Anomaloskop für die Diagnose der einzelnen Typen der Farbensinnstörungen nebst Bermerkungen über ihren Vererbungsmodus,” Schweiz. Med. Wschr. 52, 1273–1278 (1928).

Vision Res. (7)

D. E. Mitchell and W. A. H. Rushton, “Visual pigments in dichromats,” Vision Res. 11, 1033–1044 (1971);D. E. Mitchell and W. A. H. Rushton, “The red/green pigments of normal vision,” ibid. 11, 1045–1056 (1971).
[CrossRef] [PubMed]

W. A. H. Rushton, D. S. Powell, and K. D. White, “Exchange thresholds in dichromats,” Vision Res. 13, 1993–2002 (1973);W. A. H. Rushton, D. S. Powell, and K. D. White, “The spectral sensitivity of “red” and “green” cones in the normal eye,” ibid. 13, 2003–2015 (1973);W. A. H. Rushton, D. S. Powell, and K. D. White, “Pigments in anomalous trichromats,” ibid. 13, 2017–2031 (1973).
[CrossRef] [PubMed]

V. C. Smith, J. Pokorny, and S. J. Starr, “Variability of Color Mixture Data. I. Interobserver variability in the unit coordinates,” Vision Res. 16, 1087–1094 (1976).
[CrossRef]

J. J. Vos and P. L. Walraven, “On the derivation of the foveal receptor primaries,” Vision Res. 11, 799–818 (1971).
[CrossRef] [PubMed]

T. P. Piantanida and H. G. Sperling, “Isolation of a third chromatic mechanism in the protanomalous observer,” Vision Res. 13, 2033–2047 (1973);“Isolation of a third chromatic mechanism in the deuteranomalous observer,” ibid. 13, 2049–2058 (1973).
[CrossRef] [PubMed]

T. P. Piantanida, T. A. Bruch, M. Latch, and F. D. Varner, “Detection of quantum flux modulation by single photopigments in human observers,” Vision Res. 16, 1029–34 (1976).
[CrossRef] [PubMed]

V. C. Smith and J. Pokorny, “Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm,” Vision Res. 15, 161–171 (1975).
[CrossRef] [PubMed]

Z. Abstamm. Vererbungsl. (1)

G. H. M. Waaler, “Über die Erblichkeitsverhältnisse der verschiedenen Arten von angeborener Rotgrünblindheit,” Z. Abstamm. Vererbungsl. 45, 279–283 (1927).

Other (11)

M. P. Willis and D. Farnsworth, “Comparative evaluation of anomaloscopes,” Med. Res. Lab. Rep. No. 190, Bus. Med. Surg. U. S. Navy Dept.Washington, D.C., 1952.

G. S. Brindley, Physiology of the Retina and the Visual Pathway, 2nd ed. (Williams and Wilkins, Baltimore, 1970).

G. Wyszecki and W. S. Stiles, Color Science (Wiley, New York, 1967).

W. Jaeger, “Genetics of Congenital Color Deficiencies,” in Handbook of Sensory Physiology Vol. VII/4: Visual Psycho-physics, edited by D. Jameson and L. M. Hurvich (Springer-Verlag, Berlin, 1972), pp. 625–642.
[CrossRef]

J. von Kries, “Normal and Anomalous Color Systems,” in H. L. F. von Helmholtz, Treatise on Physiological Optics, 3rd ed., Vol. II, translated by J. P. C. Southall, (Optical Society of America, Rochester, N. Y., 1924), pp. 395–425.

L. M. Hurvich, “Color Vision Deficiencies,” in Handbook of Sensory Physiology, Vol. VII/4: Visual Psychophysics, edited by D. Jameson and L. M. Hurvich, (Springer-Verlag, Berlin, 1972), pp. 582–624.
[CrossRef]

D. Farnsworth, The Farnsworth-Munsell 100-hue test for the examination of Color discrimination (Munsell Color Co., Baltimore, 1957).

J. H. Parsons, An Introduction to the Study of Colour Vision, 2nd ed. (Cambridge U. P., Cambridge, England, 1924).

A. Linksz, An Essay on Color Vision (Grune and Stratton, New York, 1964).

C. R. Ingling, B. H. P. Tsou, and B. A. Drum, “The spectral sensitivity of the opponent-color channels” (unpublished).

P. Moon, The Scientific Basis of Illuminating Engineering (Dover, New York, 1961).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

FIG. 1
FIG. 1

Estimates of the absorption spectrum of the anomalous visual photopigment of deuteranomalous (panel a) and protanomalous (panel b) trichromats. Data are expressed as log relative quantal sensitivity at the retina. The solid lines are proposed visual photopigment absorption coefficients using the single-pigment hypothesis, and based on analysis of red-green matches (note 29). Symbols: ◊, Rushton, Powell & White (note 20); ○, De Vries (note 22); a, Wald (note 24); +, Wal-raven, Van Hout, and Leebeck (note 25); Δ, Alpern and Torii (note 26); ∇, Piantanida and Sperling (note 27); ×, Piantanida, Bruch, Latch, & Varner (note 28).

FIG. 2
FIG. 2

Theoretical pigment sensitivity ratios as a function of q, the fraction red in the match. Left panel is for deutan mode, symbols: ○, SM/SL for normal trichromats, ●, SM′/SL for deuteranomalous trichromats in the deutan mode. Right panel is for protan mode, symbols: □, SL/SM for normal trichromats; ■, SL′/SM for protanomalous in the protan mode. For derivation of theoretical photopigment sensitivities see notes 37 and 29.

FIG. 3
FIG. 3

The relation of the transformed score q to Nagel Model 2 r-g mixture scale. Values for q were derived from equation 4 for the deutan mode (left panel) and equation 5 for the protan mode (right panel). Symbols: ○, data calculated for the Model 2 set to give a normal match at an r-g mixture scale value of 60; □, data calculated for the Model 2 set to give a normal match at an r-g mixture scale value of 40.

FIG. 4
FIG. 4

Block histograms of the frequency of match widths in transformed score, Δq (panel a), and the frequency of the corresponding changes in theoretical pigment sensitivity ratios (panel b). Data are shown for 40 normal (left side) and 56 deuteranomalous (right side) trichromats. Computations are described in the text. Associated values of χ2 are: panel ( a ) , χ ( 11 ) 2 = 70. 66 ; { p : χ ( 11 ) 2 > 70. 66 > 0. 001 } panel ( b ) , χ ( 8 ) 2 = 9. 8 ; { p : χ ( 8 ) 2 > 9. 8 < 0. 75 } .

FIG. 5
FIG. 5

Same as for Figure 4 but for 40 normal and 11 protanomalous trichromats. The small number of protanomalous trichromats precluded statistical test.

FIG. 6
FIG. 6

Panel (a) pigment sensitivity ratios, SL/SM for normal, SL/SM′ for deuteranomalous and SL′/SM for protanomalous trichromats as a function of wavelength. Ratios were multiplied by arbitrary constants to yield unity at reported values (notes 43 and 44) of unique yellow; panel (b) expanded view of ratios for normal and deuteranomalous trichromats. The ratios between 530 and 680 nm (a′b′) for deuteranomalous match those between 571 and 597 nm (ab) for normal trichromats.

FIG. 7
FIG. 7

Chromatic response functions for six deuteranomalous (left hand side) and four normal (right hand side) trichromats as a function of wavelength at 25 tds. Upper scale shows the actual wavelengths presented to the normal trichromats. Lower scale shows the actual wavelengths presented to the deuteranomalous and “equivalent” wavelengths for the normal trichromats. Panel (a) shows data for the response “green,” panel (b) for the “yellow” for both classes of observer. Panel (c) shows data for the response “red” for deuteranomalous and “orange” for normal trichromats.

FIG. 8
FIG. 8

As for Figure 7 for data of 250 tds.

FIG. 9
FIG. 9

Comparison of average data of normal (dashed) and deuteranomalous (solid lines). The abscissa shows actual wave lengths for deuteranomalous and equivalent wavelengths for normal trichromats. Panel (a) shows data at 250 tds; panel (b) at 25 tds.

FIG. 10
FIG. 10

Comparison of results of 25 tds (solid) and 250 tds (dashed). The abscissa is as described for Figure 9. Panel (a) shows data for deuteranomalous, panel (b) for normal trichromats.

FIG. 11
FIG. 11

Predicted r-g chromatic opponents. Symbols: ∇, deuteranomalous; ○, normal, and Δ, protanomalous trichromats.

FIG. 12
FIG. 12

Predicted neutral points as a function of color temperature. Data were calculated using field sensitivities for a LWS-MWS (tritanopic) opponent chromatic for a normal and a corresponding LWS-M′WS opponent for a deuteranomalous and a L′WS-MWS opponent for a protanomalous trichromat. Symbols: ∇, deuteranomalous; ○, normal; Δ, protanomalous trichromats.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

S M Y S L Y = S M R S L R S M G S L G q + S M G S L G ;
S L Y S M Y = S L R S M R S L G S M G q + S L G S M G .
q = a ( R / G mixture ) a ( R / G mixture ) + ( 75 R / G mixture ) ,
N ( r g ) λ = 10 S λ LWS Σ λ S λ LWS 10 S λ MWS Σ λ S λ MWS
DA ( r g ) λ = 10 S λ LWS Σ λ S λ LWS 10 S λ M WS Σ λ S λ M WS ;
PA ( r g ) λ = 10 S λ L WS Σ λ S λ L WS 10 S λ MWS Σ λ S λ MWS .
Σ H λ S λ MWS d λ Σ H λ S λ LWS d λ = S NPMWS S NPLWS ,
panel ( a ) , χ ( 11 ) 2 = 70. 66 ; { p : χ ( 11 ) 2 > 70. 66 > 0. 001 } panel ( b ) , χ ( 8 ) 2 = 9. 8 ; { p : χ ( 8 ) 2 > 9. 8 < 0. 75 } .