Abstract

Density-sensitive line intensity ratios measurable in high-resolution spectra are discussed for high-temperature plasmas (1.5–1300 eV). By working along isoelectronic sequences, it is possible to find density-sensitive ratios over a wide range of electron densities (1012 to ∼1021 cm−3). This range includes the density of a number of laboratory plasmas of current interest. We also discuss the temperature sensitivity of some of the line ratios for ions formed in the colder plasmas with temperatures of 1.5–15 eV. We present a table of forbidden lines obtained from Skylab spectra of the solar corona. Lines of this type should be detectable in certain laboratory spectra. Their long wavelengths make these lines particularly suitable for measuring the ion temperature or nonthermal motions. Finally, we show the feasibility of detecting megagauss magnetic fields in high-temperature plasmas, from profiles of selected spectral lines.

© 1977 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. D. Cowan (private communication, 1976).
  2. H. Van Regemorter, “Rate of Collisional Excitation in Stellar Atmospheres,” Astrophys. J. 136, 906 (1962);J. Davis (private communication, 1976).
    [Crossref]
  3. W. L. Wiese, M. W. Smith, and B. M. Miles, “Atomic Transition Probabilities,” Vol. II, Nat. Stand. Ref. Data Ser. Nat. Bur. Stand. 22, (1969).
  4. O. Bely and P. Faucher, “Fine Structure Proton Excitation Rates for Positive Ions in the 2p,2p5, 3p,3p5 series,” Astron. Astrophys. 6, 88 (1970).
  5. M. Blaha, “Effective Gaunt factors geff for excitation of positive ions by electron collisions in a simplified Coulomb Born approximation,” Astrophys. J. 157, 473 (1969);“Collision excitation of positive ions in configurations: Transitions between levels of the P term Part II,” Astron. Astrophys. 1, 42 (1969).
    [Crossref]
  6. G. H. Shortley, “The Computation of Quadrupole and Magnetic–Dipole Transition Probabilities,” Phys. Rev. 57, 225 (1940).
    [Crossref]
  7. C. Jordan, “Ionization equilibria for high ions of Fe and Ni,” Mon. Not. R. Astron. Soc. 148, 17 (1970).
  8. G. A. Doschek and U. Feldman, “Diagnostic Forbidden lines of highly ionized elements for tokamak plasmas,” J. of Appl. Phys. 47, 3083 (1976).
    [Crossref]
  9. B. Edlén, “On the identification of Ar x and Ar xiv in the solar corona and the origin of the unidentified coronal lines,” Solar Phys. 9, 439 (1969).
    [Crossref]
  10. W. E. Behring, Leonard Cohen, and U. Feldman, “The solar spectrum: Wavelengths and identifications from 60 to 385 Angstroms,” Astrophys. J. 175, 493 (1972).
    [Crossref]
  11. U. Feldman, G. A. Doschek, R. D. Cowan, and Leonard Cohen, and, “Transitions 2s22pk–2s 2pk+1 of the N i and C i isoelectronic sequence,” Astrophys. J. 196, 613 (1975).
    [Crossref]
  12. U. Feldman, “Spectroscopy from laser-produced plasmas at flare temperatures,” Astrophys. Space Sci. 41, 155 (1976).
    [Crossref]
  13. R. L. Kelly and L. J. Palumbo, Atomic and Ionic Emission Lines Below 2000 Angstroms,” NRL Report No. 7599 (1973).
  14. G. A. Doschek, U. Feldman, J. Davis, and R. D. Cowan, “Density Sensitive Lines of Highly ionized iron,” Phys. Rev. A 12, 980 (1975).
    [Crossref]
  15. U. Feldman and G. A. Doschek, “The 3s–3p and 3p–3d lines of Mg ii observed above the solar limb for Skylab,” Astrophys. J. Lett. 212, L147 (1977).
    [Crossref]
  16. U. Feldman, G. A. Doschek, D. K. Prinz, and D. J. Nagel, “Space-resolved spectra of laser produced plasmas in the XUV,” J. Appl. Phys. 47, 1341 (1976).
    [Crossref]
  17. W. E. Behring, Leonard Cohen, G. A. Doschek, and U. Feldman, “Transitions of Zn xxii, Zn xxiii, Zn xxiv, Ge xxiv, and Ge xxv observed in laser produced plasmas,” J. Opt. Soc. Am. 66, 376 (1976).
    [Crossref]
  18. U. Feldman, G. A. Doschek, D. J. Nagel, W. E. Behring, and R. D. Cowan, “Laser plasma spectra of highly ionized fluorine,” Astrophys. J. 187, 417 (1974).
    [Crossref]
  19. A. K. Dupree, P. V. Foukal, and C. Jordan, “Plasma diagnostic techniques in the ultraviolet. The C iii density sensitive lines in the sun,” Astrophys. J. 209, 621 (1976).
    [Crossref]
  20. H. Nussbaumer, “Spectral lines in the Be i isoelectronic sequence,” Astron. Astrophys. 16, 77 (1972).
  21. H. P. Muhlethaler and H. Nussbaumer, “Transition Probabilities within 2s2–2s 2p–2p2 in the Be i sequences Be i-Ni xxv,” Astron. Astrophys. 48, 109 (1976);A. H. Gabriel and C. Jordan, Case studies in atomic collision physics 2, edited by E. W. McDaniel and M. R. C. McDowell (North-Holland, Amsterdam, 1972), p. 210.
  22. K. G. Widing, “Fe xxiii 263 Å and Fe xxiv 255 Å emission in solar flares,” Astrophys. J. Lett. 197, L33 (1975).
    [Crossref]
  23. G. D. Sandlin, G. E. Brueckner, V. E. Scherrer, and R. Tousey, “High temperature flare lines in the solar spectrum 171 Å–630 Å,” Astrophys. J. Lett. 205, L47 (1976).
    [Crossref]
  24. G. A. Doschek, U. Feldman, K. P. Dere, G. D. Sandlin, M. E. VanHoosier, G. E. Brueckner, J. D. Purcell, and R. Tousey, “Forbidden lines of highly ionized iron in solar flare spectra,” Astrophys. J. Lett. 196, L83 (1975).
    [Crossref]
  25. G. D. Sandlin, G. E. Brueckner, and R. Tousey, “Forbidden lines of the solar corona and transition zone: 975 Å–3000 Å,” to be published in Vol. 214 (June15) of the Astrophys. J. (1977).
    [Crossref]
  26. C. Jordan, “The ionization equilibrium of elements between carbon and nickel,” Mon. Not. R. Astron. Soc. 142, 501 (1969).
  27. T. N. Lee, “Solar Flare and Laboratory Plasma Phenomena,” Astrophys. J. 190, 467 (1974).
    [Crossref]
  28. U. Feldman and G. A. Doschek, “Spectroscopy of highly ionized atoms produced by a low inductance vacuum spark,” to be published in the Proceedings of the Fifth International Conference of Atomic Physics, July 1976, Berkeley, Calif.
  29. B. Edlén, “Z-Dependence of the level interval in 2s22p2, 2s22p3 and 2s22p4,” Solar Phys. 24, 356 (1972).
    [Crossref]
  30. L. Å. Svensson, “Predicted Wavelengths of Coronal Transitions in the Configurations 3s23p2, 3s23p3 and 3s23p4,” Solar Phys. 18, 232 (1971).
    [Crossref]
  31. L. Å. Svensson, J. O. Ekberg, and B. Edlén, “The Identification of Fe ix and Ni xi in the Solar Corona,” Solar Phys. 34, 173 (1974).
    [Crossref]
  32. C. Jordan, “The Identification of New Forbidden Coronal Lines in the Solar EUV Spectrum,” Solar Phys. 21, 381 (1971).
    [Crossref]
  33. W. Engelhardt and J. Sommer, “Observations of 2 3S–2 3P Transitions in the He i Isoelectronic Sequence,” Astrophys. J. 167, 201 (1971).
    [Crossref]
  34. R. Smitt (private communication, 1976).

1977 (1)

U. Feldman and G. A. Doschek, “The 3s–3p and 3p–3d lines of Mg ii observed above the solar limb for Skylab,” Astrophys. J. Lett. 212, L147 (1977).
[Crossref]

1976 (7)

U. Feldman, G. A. Doschek, D. K. Prinz, and D. J. Nagel, “Space-resolved spectra of laser produced plasmas in the XUV,” J. Appl. Phys. 47, 1341 (1976).
[Crossref]

W. E. Behring, Leonard Cohen, G. A. Doschek, and U. Feldman, “Transitions of Zn xxii, Zn xxiii, Zn xxiv, Ge xxiv, and Ge xxv observed in laser produced plasmas,” J. Opt. Soc. Am. 66, 376 (1976).
[Crossref]

U. Feldman, “Spectroscopy from laser-produced plasmas at flare temperatures,” Astrophys. Space Sci. 41, 155 (1976).
[Crossref]

A. K. Dupree, P. V. Foukal, and C. Jordan, “Plasma diagnostic techniques in the ultraviolet. The C iii density sensitive lines in the sun,” Astrophys. J. 209, 621 (1976).
[Crossref]

G. A. Doschek and U. Feldman, “Diagnostic Forbidden lines of highly ionized elements for tokamak plasmas,” J. of Appl. Phys. 47, 3083 (1976).
[Crossref]

H. P. Muhlethaler and H. Nussbaumer, “Transition Probabilities within 2s2–2s 2p–2p2 in the Be i sequences Be i-Ni xxv,” Astron. Astrophys. 48, 109 (1976);A. H. Gabriel and C. Jordan, Case studies in atomic collision physics 2, edited by E. W. McDaniel and M. R. C. McDowell (North-Holland, Amsterdam, 1972), p. 210.

G. D. Sandlin, G. E. Brueckner, V. E. Scherrer, and R. Tousey, “High temperature flare lines in the solar spectrum 171 Å–630 Å,” Astrophys. J. Lett. 205, L47 (1976).
[Crossref]

1975 (4)

G. A. Doschek, U. Feldman, K. P. Dere, G. D. Sandlin, M. E. VanHoosier, G. E. Brueckner, J. D. Purcell, and R. Tousey, “Forbidden lines of highly ionized iron in solar flare spectra,” Astrophys. J. Lett. 196, L83 (1975).
[Crossref]

K. G. Widing, “Fe xxiii 263 Å and Fe xxiv 255 Å emission in solar flares,” Astrophys. J. Lett. 197, L33 (1975).
[Crossref]

U. Feldman, G. A. Doschek, R. D. Cowan, and Leonard Cohen, and, “Transitions 2s22pk–2s 2pk+1 of the N i and C i isoelectronic sequence,” Astrophys. J. 196, 613 (1975).
[Crossref]

G. A. Doschek, U. Feldman, J. Davis, and R. D. Cowan, “Density Sensitive Lines of Highly ionized iron,” Phys. Rev. A 12, 980 (1975).
[Crossref]

1974 (3)

U. Feldman, G. A. Doschek, D. J. Nagel, W. E. Behring, and R. D. Cowan, “Laser plasma spectra of highly ionized fluorine,” Astrophys. J. 187, 417 (1974).
[Crossref]

T. N. Lee, “Solar Flare and Laboratory Plasma Phenomena,” Astrophys. J. 190, 467 (1974).
[Crossref]

L. Å. Svensson, J. O. Ekberg, and B. Edlén, “The Identification of Fe ix and Ni xi in the Solar Corona,” Solar Phys. 34, 173 (1974).
[Crossref]

1972 (3)

B. Edlén, “Z-Dependence of the level interval in 2s22p2, 2s22p3 and 2s22p4,” Solar Phys. 24, 356 (1972).
[Crossref]

H. Nussbaumer, “Spectral lines in the Be i isoelectronic sequence,” Astron. Astrophys. 16, 77 (1972).

W. E. Behring, Leonard Cohen, and U. Feldman, “The solar spectrum: Wavelengths and identifications from 60 to 385 Angstroms,” Astrophys. J. 175, 493 (1972).
[Crossref]

1971 (3)

L. Å. Svensson, “Predicted Wavelengths of Coronal Transitions in the Configurations 3s23p2, 3s23p3 and 3s23p4,” Solar Phys. 18, 232 (1971).
[Crossref]

C. Jordan, “The Identification of New Forbidden Coronal Lines in the Solar EUV Spectrum,” Solar Phys. 21, 381 (1971).
[Crossref]

W. Engelhardt and J. Sommer, “Observations of 2 3S–2 3P Transitions in the He i Isoelectronic Sequence,” Astrophys. J. 167, 201 (1971).
[Crossref]

1970 (2)

O. Bely and P. Faucher, “Fine Structure Proton Excitation Rates for Positive Ions in the 2p,2p5, 3p,3p5 series,” Astron. Astrophys. 6, 88 (1970).

C. Jordan, “Ionization equilibria for high ions of Fe and Ni,” Mon. Not. R. Astron. Soc. 148, 17 (1970).

1969 (3)

M. Blaha, “Effective Gaunt factors geff for excitation of positive ions by electron collisions in a simplified Coulomb Born approximation,” Astrophys. J. 157, 473 (1969);“Collision excitation of positive ions in configurations: Transitions between levels of the P term Part II,” Astron. Astrophys. 1, 42 (1969).
[Crossref]

B. Edlén, “On the identification of Ar x and Ar xiv in the solar corona and the origin of the unidentified coronal lines,” Solar Phys. 9, 439 (1969).
[Crossref]

C. Jordan, “The ionization equilibrium of elements between carbon and nickel,” Mon. Not. R. Astron. Soc. 142, 501 (1969).

1962 (1)

H. Van Regemorter, “Rate of Collisional Excitation in Stellar Atmospheres,” Astrophys. J. 136, 906 (1962);J. Davis (private communication, 1976).
[Crossref]

1940 (1)

G. H. Shortley, “The Computation of Quadrupole and Magnetic–Dipole Transition Probabilities,” Phys. Rev. 57, 225 (1940).
[Crossref]

Behring, W. E.

W. E. Behring, Leonard Cohen, G. A. Doschek, and U. Feldman, “Transitions of Zn xxii, Zn xxiii, Zn xxiv, Ge xxiv, and Ge xxv observed in laser produced plasmas,” J. Opt. Soc. Am. 66, 376 (1976).
[Crossref]

U. Feldman, G. A. Doschek, D. J. Nagel, W. E. Behring, and R. D. Cowan, “Laser plasma spectra of highly ionized fluorine,” Astrophys. J. 187, 417 (1974).
[Crossref]

W. E. Behring, Leonard Cohen, and U. Feldman, “The solar spectrum: Wavelengths and identifications from 60 to 385 Angstroms,” Astrophys. J. 175, 493 (1972).
[Crossref]

Bely, O.

O. Bely and P. Faucher, “Fine Structure Proton Excitation Rates for Positive Ions in the 2p,2p5, 3p,3p5 series,” Astron. Astrophys. 6, 88 (1970).

Blaha, M.

M. Blaha, “Effective Gaunt factors geff for excitation of positive ions by electron collisions in a simplified Coulomb Born approximation,” Astrophys. J. 157, 473 (1969);“Collision excitation of positive ions in configurations: Transitions between levels of the P term Part II,” Astron. Astrophys. 1, 42 (1969).
[Crossref]

Brueckner, G. E.

G. D. Sandlin, G. E. Brueckner, V. E. Scherrer, and R. Tousey, “High temperature flare lines in the solar spectrum 171 Å–630 Å,” Astrophys. J. Lett. 205, L47 (1976).
[Crossref]

G. A. Doschek, U. Feldman, K. P. Dere, G. D. Sandlin, M. E. VanHoosier, G. E. Brueckner, J. D. Purcell, and R. Tousey, “Forbidden lines of highly ionized iron in solar flare spectra,” Astrophys. J. Lett. 196, L83 (1975).
[Crossref]

G. D. Sandlin, G. E. Brueckner, and R. Tousey, “Forbidden lines of the solar corona and transition zone: 975 Å–3000 Å,” to be published in Vol. 214 (June15) of the Astrophys. J. (1977).
[Crossref]

Cohen, Leonard

W. E. Behring, Leonard Cohen, G. A. Doschek, and U. Feldman, “Transitions of Zn xxii, Zn xxiii, Zn xxiv, Ge xxiv, and Ge xxv observed in laser produced plasmas,” J. Opt. Soc. Am. 66, 376 (1976).
[Crossref]

U. Feldman, G. A. Doschek, R. D. Cowan, and Leonard Cohen, and, “Transitions 2s22pk–2s 2pk+1 of the N i and C i isoelectronic sequence,” Astrophys. J. 196, 613 (1975).
[Crossref]

W. E. Behring, Leonard Cohen, and U. Feldman, “The solar spectrum: Wavelengths and identifications from 60 to 385 Angstroms,” Astrophys. J. 175, 493 (1972).
[Crossref]

Cowan, R. D.

U. Feldman, G. A. Doschek, R. D. Cowan, and Leonard Cohen, and, “Transitions 2s22pk–2s 2pk+1 of the N i and C i isoelectronic sequence,” Astrophys. J. 196, 613 (1975).
[Crossref]

G. A. Doschek, U. Feldman, J. Davis, and R. D. Cowan, “Density Sensitive Lines of Highly ionized iron,” Phys. Rev. A 12, 980 (1975).
[Crossref]

U. Feldman, G. A. Doschek, D. J. Nagel, W. E. Behring, and R. D. Cowan, “Laser plasma spectra of highly ionized fluorine,” Astrophys. J. 187, 417 (1974).
[Crossref]

R. D. Cowan (private communication, 1976).

Davis, J.

G. A. Doschek, U. Feldman, J. Davis, and R. D. Cowan, “Density Sensitive Lines of Highly ionized iron,” Phys. Rev. A 12, 980 (1975).
[Crossref]

Dere, K. P.

G. A. Doschek, U. Feldman, K. P. Dere, G. D. Sandlin, M. E. VanHoosier, G. E. Brueckner, J. D. Purcell, and R. Tousey, “Forbidden lines of highly ionized iron in solar flare spectra,” Astrophys. J. Lett. 196, L83 (1975).
[Crossref]

Doschek, G. A.

U. Feldman and G. A. Doschek, “The 3s–3p and 3p–3d lines of Mg ii observed above the solar limb for Skylab,” Astrophys. J. Lett. 212, L147 (1977).
[Crossref]

U. Feldman, G. A. Doschek, D. K. Prinz, and D. J. Nagel, “Space-resolved spectra of laser produced plasmas in the XUV,” J. Appl. Phys. 47, 1341 (1976).
[Crossref]

G. A. Doschek and U. Feldman, “Diagnostic Forbidden lines of highly ionized elements for tokamak plasmas,” J. of Appl. Phys. 47, 3083 (1976).
[Crossref]

W. E. Behring, Leonard Cohen, G. A. Doschek, and U. Feldman, “Transitions of Zn xxii, Zn xxiii, Zn xxiv, Ge xxiv, and Ge xxv observed in laser produced plasmas,” J. Opt. Soc. Am. 66, 376 (1976).
[Crossref]

U. Feldman, G. A. Doschek, R. D. Cowan, and Leonard Cohen, and, “Transitions 2s22pk–2s 2pk+1 of the N i and C i isoelectronic sequence,” Astrophys. J. 196, 613 (1975).
[Crossref]

G. A. Doschek, U. Feldman, J. Davis, and R. D. Cowan, “Density Sensitive Lines of Highly ionized iron,” Phys. Rev. A 12, 980 (1975).
[Crossref]

G. A. Doschek, U. Feldman, K. P. Dere, G. D. Sandlin, M. E. VanHoosier, G. E. Brueckner, J. D. Purcell, and R. Tousey, “Forbidden lines of highly ionized iron in solar flare spectra,” Astrophys. J. Lett. 196, L83 (1975).
[Crossref]

U. Feldman, G. A. Doschek, D. J. Nagel, W. E. Behring, and R. D. Cowan, “Laser plasma spectra of highly ionized fluorine,” Astrophys. J. 187, 417 (1974).
[Crossref]

U. Feldman and G. A. Doschek, “Spectroscopy of highly ionized atoms produced by a low inductance vacuum spark,” to be published in the Proceedings of the Fifth International Conference of Atomic Physics, July 1976, Berkeley, Calif.

Dupree, A. K.

A. K. Dupree, P. V. Foukal, and C. Jordan, “Plasma diagnostic techniques in the ultraviolet. The C iii density sensitive lines in the sun,” Astrophys. J. 209, 621 (1976).
[Crossref]

Edlén, B.

L. Å. Svensson, J. O. Ekberg, and B. Edlén, “The Identification of Fe ix and Ni xi in the Solar Corona,” Solar Phys. 34, 173 (1974).
[Crossref]

B. Edlén, “Z-Dependence of the level interval in 2s22p2, 2s22p3 and 2s22p4,” Solar Phys. 24, 356 (1972).
[Crossref]

B. Edlén, “On the identification of Ar x and Ar xiv in the solar corona and the origin of the unidentified coronal lines,” Solar Phys. 9, 439 (1969).
[Crossref]

Ekberg, J. O.

L. Å. Svensson, J. O. Ekberg, and B. Edlén, “The Identification of Fe ix and Ni xi in the Solar Corona,” Solar Phys. 34, 173 (1974).
[Crossref]

Engelhardt, W.

W. Engelhardt and J. Sommer, “Observations of 2 3S–2 3P Transitions in the He i Isoelectronic Sequence,” Astrophys. J. 167, 201 (1971).
[Crossref]

Faucher, P.

O. Bely and P. Faucher, “Fine Structure Proton Excitation Rates for Positive Ions in the 2p,2p5, 3p,3p5 series,” Astron. Astrophys. 6, 88 (1970).

Feldman, U.

U. Feldman and G. A. Doschek, “The 3s–3p and 3p–3d lines of Mg ii observed above the solar limb for Skylab,” Astrophys. J. Lett. 212, L147 (1977).
[Crossref]

U. Feldman, G. A. Doschek, D. K. Prinz, and D. J. Nagel, “Space-resolved spectra of laser produced plasmas in the XUV,” J. Appl. Phys. 47, 1341 (1976).
[Crossref]

U. Feldman, “Spectroscopy from laser-produced plasmas at flare temperatures,” Astrophys. Space Sci. 41, 155 (1976).
[Crossref]

G. A. Doschek and U. Feldman, “Diagnostic Forbidden lines of highly ionized elements for tokamak plasmas,” J. of Appl. Phys. 47, 3083 (1976).
[Crossref]

W. E. Behring, Leonard Cohen, G. A. Doschek, and U. Feldman, “Transitions of Zn xxii, Zn xxiii, Zn xxiv, Ge xxiv, and Ge xxv observed in laser produced plasmas,” J. Opt. Soc. Am. 66, 376 (1976).
[Crossref]

U. Feldman, G. A. Doschek, R. D. Cowan, and Leonard Cohen, and, “Transitions 2s22pk–2s 2pk+1 of the N i and C i isoelectronic sequence,” Astrophys. J. 196, 613 (1975).
[Crossref]

G. A. Doschek, U. Feldman, J. Davis, and R. D. Cowan, “Density Sensitive Lines of Highly ionized iron,” Phys. Rev. A 12, 980 (1975).
[Crossref]

G. A. Doschek, U. Feldman, K. P. Dere, G. D. Sandlin, M. E. VanHoosier, G. E. Brueckner, J. D. Purcell, and R. Tousey, “Forbidden lines of highly ionized iron in solar flare spectra,” Astrophys. J. Lett. 196, L83 (1975).
[Crossref]

U. Feldman, G. A. Doschek, D. J. Nagel, W. E. Behring, and R. D. Cowan, “Laser plasma spectra of highly ionized fluorine,” Astrophys. J. 187, 417 (1974).
[Crossref]

W. E. Behring, Leonard Cohen, and U. Feldman, “The solar spectrum: Wavelengths and identifications from 60 to 385 Angstroms,” Astrophys. J. 175, 493 (1972).
[Crossref]

U. Feldman and G. A. Doschek, “Spectroscopy of highly ionized atoms produced by a low inductance vacuum spark,” to be published in the Proceedings of the Fifth International Conference of Atomic Physics, July 1976, Berkeley, Calif.

Foukal, P. V.

A. K. Dupree, P. V. Foukal, and C. Jordan, “Plasma diagnostic techniques in the ultraviolet. The C iii density sensitive lines in the sun,” Astrophys. J. 209, 621 (1976).
[Crossref]

Jordan, C.

A. K. Dupree, P. V. Foukal, and C. Jordan, “Plasma diagnostic techniques in the ultraviolet. The C iii density sensitive lines in the sun,” Astrophys. J. 209, 621 (1976).
[Crossref]

C. Jordan, “The Identification of New Forbidden Coronal Lines in the Solar EUV Spectrum,” Solar Phys. 21, 381 (1971).
[Crossref]

C. Jordan, “Ionization equilibria for high ions of Fe and Ni,” Mon. Not. R. Astron. Soc. 148, 17 (1970).

C. Jordan, “The ionization equilibrium of elements between carbon and nickel,” Mon. Not. R. Astron. Soc. 142, 501 (1969).

Kelly, R. L.

R. L. Kelly and L. J. Palumbo, Atomic and Ionic Emission Lines Below 2000 Angstroms,” NRL Report No. 7599 (1973).

Lee, T. N.

T. N. Lee, “Solar Flare and Laboratory Plasma Phenomena,” Astrophys. J. 190, 467 (1974).
[Crossref]

Miles, B. M.

W. L. Wiese, M. W. Smith, and B. M. Miles, “Atomic Transition Probabilities,” Vol. II, Nat. Stand. Ref. Data Ser. Nat. Bur. Stand. 22, (1969).

Muhlethaler, H. P.

H. P. Muhlethaler and H. Nussbaumer, “Transition Probabilities within 2s2–2s 2p–2p2 in the Be i sequences Be i-Ni xxv,” Astron. Astrophys. 48, 109 (1976);A. H. Gabriel and C. Jordan, Case studies in atomic collision physics 2, edited by E. W. McDaniel and M. R. C. McDowell (North-Holland, Amsterdam, 1972), p. 210.

Nagel, D. J.

U. Feldman, G. A. Doschek, D. K. Prinz, and D. J. Nagel, “Space-resolved spectra of laser produced plasmas in the XUV,” J. Appl. Phys. 47, 1341 (1976).
[Crossref]

U. Feldman, G. A. Doschek, D. J. Nagel, W. E. Behring, and R. D. Cowan, “Laser plasma spectra of highly ionized fluorine,” Astrophys. J. 187, 417 (1974).
[Crossref]

Nussbaumer, H.

H. P. Muhlethaler and H. Nussbaumer, “Transition Probabilities within 2s2–2s 2p–2p2 in the Be i sequences Be i-Ni xxv,” Astron. Astrophys. 48, 109 (1976);A. H. Gabriel and C. Jordan, Case studies in atomic collision physics 2, edited by E. W. McDaniel and M. R. C. McDowell (North-Holland, Amsterdam, 1972), p. 210.

H. Nussbaumer, “Spectral lines in the Be i isoelectronic sequence,” Astron. Astrophys. 16, 77 (1972).

Palumbo, L. J.

R. L. Kelly and L. J. Palumbo, Atomic and Ionic Emission Lines Below 2000 Angstroms,” NRL Report No. 7599 (1973).

Prinz, D. K.

U. Feldman, G. A. Doschek, D. K. Prinz, and D. J. Nagel, “Space-resolved spectra of laser produced plasmas in the XUV,” J. Appl. Phys. 47, 1341 (1976).
[Crossref]

Purcell, J. D.

G. A. Doschek, U. Feldman, K. P. Dere, G. D. Sandlin, M. E. VanHoosier, G. E. Brueckner, J. D. Purcell, and R. Tousey, “Forbidden lines of highly ionized iron in solar flare spectra,” Astrophys. J. Lett. 196, L83 (1975).
[Crossref]

Sandlin, G. D.

G. D. Sandlin, G. E. Brueckner, V. E. Scherrer, and R. Tousey, “High temperature flare lines in the solar spectrum 171 Å–630 Å,” Astrophys. J. Lett. 205, L47 (1976).
[Crossref]

G. A. Doschek, U. Feldman, K. P. Dere, G. D. Sandlin, M. E. VanHoosier, G. E. Brueckner, J. D. Purcell, and R. Tousey, “Forbidden lines of highly ionized iron in solar flare spectra,” Astrophys. J. Lett. 196, L83 (1975).
[Crossref]

G. D. Sandlin, G. E. Brueckner, and R. Tousey, “Forbidden lines of the solar corona and transition zone: 975 Å–3000 Å,” to be published in Vol. 214 (June15) of the Astrophys. J. (1977).
[Crossref]

Scherrer, V. E.

G. D. Sandlin, G. E. Brueckner, V. E. Scherrer, and R. Tousey, “High temperature flare lines in the solar spectrum 171 Å–630 Å,” Astrophys. J. Lett. 205, L47 (1976).
[Crossref]

Shortley, G. H.

G. H. Shortley, “The Computation of Quadrupole and Magnetic–Dipole Transition Probabilities,” Phys. Rev. 57, 225 (1940).
[Crossref]

Smith, M. W.

W. L. Wiese, M. W. Smith, and B. M. Miles, “Atomic Transition Probabilities,” Vol. II, Nat. Stand. Ref. Data Ser. Nat. Bur. Stand. 22, (1969).

Smitt, R.

R. Smitt (private communication, 1976).

Sommer, J.

W. Engelhardt and J. Sommer, “Observations of 2 3S–2 3P Transitions in the He i Isoelectronic Sequence,” Astrophys. J. 167, 201 (1971).
[Crossref]

Svensson, L. Å.

L. Å. Svensson, J. O. Ekberg, and B. Edlén, “The Identification of Fe ix and Ni xi in the Solar Corona,” Solar Phys. 34, 173 (1974).
[Crossref]

L. Å. Svensson, “Predicted Wavelengths of Coronal Transitions in the Configurations 3s23p2, 3s23p3 and 3s23p4,” Solar Phys. 18, 232 (1971).
[Crossref]

Tousey, R.

G. D. Sandlin, G. E. Brueckner, V. E. Scherrer, and R. Tousey, “High temperature flare lines in the solar spectrum 171 Å–630 Å,” Astrophys. J. Lett. 205, L47 (1976).
[Crossref]

G. A. Doschek, U. Feldman, K. P. Dere, G. D. Sandlin, M. E. VanHoosier, G. E. Brueckner, J. D. Purcell, and R. Tousey, “Forbidden lines of highly ionized iron in solar flare spectra,” Astrophys. J. Lett. 196, L83 (1975).
[Crossref]

G. D. Sandlin, G. E. Brueckner, and R. Tousey, “Forbidden lines of the solar corona and transition zone: 975 Å–3000 Å,” to be published in Vol. 214 (June15) of the Astrophys. J. (1977).
[Crossref]

Van Regemorter, H.

H. Van Regemorter, “Rate of Collisional Excitation in Stellar Atmospheres,” Astrophys. J. 136, 906 (1962);J. Davis (private communication, 1976).
[Crossref]

VanHoosier, M. E.

G. A. Doschek, U. Feldman, K. P. Dere, G. D. Sandlin, M. E. VanHoosier, G. E. Brueckner, J. D. Purcell, and R. Tousey, “Forbidden lines of highly ionized iron in solar flare spectra,” Astrophys. J. Lett. 196, L83 (1975).
[Crossref]

Widing, K. G.

K. G. Widing, “Fe xxiii 263 Å and Fe xxiv 255 Å emission in solar flares,” Astrophys. J. Lett. 197, L33 (1975).
[Crossref]

Wiese, W. L.

W. L. Wiese, M. W. Smith, and B. M. Miles, “Atomic Transition Probabilities,” Vol. II, Nat. Stand. Ref. Data Ser. Nat. Bur. Stand. 22, (1969).

Astron. Astrophys. (3)

O. Bely and P. Faucher, “Fine Structure Proton Excitation Rates for Positive Ions in the 2p,2p5, 3p,3p5 series,” Astron. Astrophys. 6, 88 (1970).

H. Nussbaumer, “Spectral lines in the Be i isoelectronic sequence,” Astron. Astrophys. 16, 77 (1972).

H. P. Muhlethaler and H. Nussbaumer, “Transition Probabilities within 2s2–2s 2p–2p2 in the Be i sequences Be i-Ni xxv,” Astron. Astrophys. 48, 109 (1976);A. H. Gabriel and C. Jordan, Case studies in atomic collision physics 2, edited by E. W. McDaniel and M. R. C. McDowell (North-Holland, Amsterdam, 1972), p. 210.

Astrophys. J. (8)

T. N. Lee, “Solar Flare and Laboratory Plasma Phenomena,” Astrophys. J. 190, 467 (1974).
[Crossref]

W. Engelhardt and J. Sommer, “Observations of 2 3S–2 3P Transitions in the He i Isoelectronic Sequence,” Astrophys. J. 167, 201 (1971).
[Crossref]

M. Blaha, “Effective Gaunt factors geff for excitation of positive ions by electron collisions in a simplified Coulomb Born approximation,” Astrophys. J. 157, 473 (1969);“Collision excitation of positive ions in configurations: Transitions between levels of the P term Part II,” Astron. Astrophys. 1, 42 (1969).
[Crossref]

H. Van Regemorter, “Rate of Collisional Excitation in Stellar Atmospheres,” Astrophys. J. 136, 906 (1962);J. Davis (private communication, 1976).
[Crossref]

W. E. Behring, Leonard Cohen, and U. Feldman, “The solar spectrum: Wavelengths and identifications from 60 to 385 Angstroms,” Astrophys. J. 175, 493 (1972).
[Crossref]

U. Feldman, G. A. Doschek, R. D. Cowan, and Leonard Cohen, and, “Transitions 2s22pk–2s 2pk+1 of the N i and C i isoelectronic sequence,” Astrophys. J. 196, 613 (1975).
[Crossref]

U. Feldman, G. A. Doschek, D. J. Nagel, W. E. Behring, and R. D. Cowan, “Laser plasma spectra of highly ionized fluorine,” Astrophys. J. 187, 417 (1974).
[Crossref]

A. K. Dupree, P. V. Foukal, and C. Jordan, “Plasma diagnostic techniques in the ultraviolet. The C iii density sensitive lines in the sun,” Astrophys. J. 209, 621 (1976).
[Crossref]

Astrophys. J. Lett. (4)

U. Feldman and G. A. Doschek, “The 3s–3p and 3p–3d lines of Mg ii observed above the solar limb for Skylab,” Astrophys. J. Lett. 212, L147 (1977).
[Crossref]

K. G. Widing, “Fe xxiii 263 Å and Fe xxiv 255 Å emission in solar flares,” Astrophys. J. Lett. 197, L33 (1975).
[Crossref]

G. D. Sandlin, G. E. Brueckner, V. E. Scherrer, and R. Tousey, “High temperature flare lines in the solar spectrum 171 Å–630 Å,” Astrophys. J. Lett. 205, L47 (1976).
[Crossref]

G. A. Doschek, U. Feldman, K. P. Dere, G. D. Sandlin, M. E. VanHoosier, G. E. Brueckner, J. D. Purcell, and R. Tousey, “Forbidden lines of highly ionized iron in solar flare spectra,” Astrophys. J. Lett. 196, L83 (1975).
[Crossref]

Astrophys. Space Sci. (1)

U. Feldman, “Spectroscopy from laser-produced plasmas at flare temperatures,” Astrophys. Space Sci. 41, 155 (1976).
[Crossref]

J. Appl. Phys. (1)

U. Feldman, G. A. Doschek, D. K. Prinz, and D. J. Nagel, “Space-resolved spectra of laser produced plasmas in the XUV,” J. Appl. Phys. 47, 1341 (1976).
[Crossref]

J. of Appl. Phys. (1)

G. A. Doschek and U. Feldman, “Diagnostic Forbidden lines of highly ionized elements for tokamak plasmas,” J. of Appl. Phys. 47, 3083 (1976).
[Crossref]

J. Opt. Soc. Am. (1)

Mon. Not. R. Astron. Soc. (2)

C. Jordan, “Ionization equilibria for high ions of Fe and Ni,” Mon. Not. R. Astron. Soc. 148, 17 (1970).

C. Jordan, “The ionization equilibrium of elements between carbon and nickel,” Mon. Not. R. Astron. Soc. 142, 501 (1969).

Phys. Rev. (1)

G. H. Shortley, “The Computation of Quadrupole and Magnetic–Dipole Transition Probabilities,” Phys. Rev. 57, 225 (1940).
[Crossref]

Phys. Rev. A (1)

G. A. Doschek, U. Feldman, J. Davis, and R. D. Cowan, “Density Sensitive Lines of Highly ionized iron,” Phys. Rev. A 12, 980 (1975).
[Crossref]

Solar Phys. (5)

B. Edlén, “Z-Dependence of the level interval in 2s22p2, 2s22p3 and 2s22p4,” Solar Phys. 24, 356 (1972).
[Crossref]

L. Å. Svensson, “Predicted Wavelengths of Coronal Transitions in the Configurations 3s23p2, 3s23p3 and 3s23p4,” Solar Phys. 18, 232 (1971).
[Crossref]

L. Å. Svensson, J. O. Ekberg, and B. Edlén, “The Identification of Fe ix and Ni xi in the Solar Corona,” Solar Phys. 34, 173 (1974).
[Crossref]

C. Jordan, “The Identification of New Forbidden Coronal Lines in the Solar EUV Spectrum,” Solar Phys. 21, 381 (1971).
[Crossref]

B. Edlén, “On the identification of Ar x and Ar xiv in the solar corona and the origin of the unidentified coronal lines,” Solar Phys. 9, 439 (1969).
[Crossref]

Other (6)

R. D. Cowan (private communication, 1976).

W. L. Wiese, M. W. Smith, and B. M. Miles, “Atomic Transition Probabilities,” Vol. II, Nat. Stand. Ref. Data Ser. Nat. Bur. Stand. 22, (1969).

R. L. Kelly and L. J. Palumbo, Atomic and Ionic Emission Lines Below 2000 Angstroms,” NRL Report No. 7599 (1973).

R. Smitt (private communication, 1976).

U. Feldman and G. A. Doschek, “Spectroscopy of highly ionized atoms produced by a low inductance vacuum spark,” to be published in the Proceedings of the Fifth International Conference of Atomic Physics, July 1976, Berkeley, Calif.

G. D. Sandlin, G. E. Brueckner, and R. Tousey, “Forbidden lines of the solar corona and transition zone: 975 Å–3000 Å,” to be published in Vol. 214 (June15) of the Astrophys. J. (1977).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

FIG. 1
FIG. 1

Simplified energy level diagram for hypothetical three-level ion. The solid lines indicate the excitations and deexcitations; the wavy lines show the radiative decay modes.

FIG. 2
FIG. 2

Energy level diagram for the F i isoelectronic sequence. The lines used to obtain the ratios in Fig. 3 are shown.

FIG. 3
FIG. 3

Density-sensitive line ratios calculated for ions of the F i isoelectronic sequence. The intensities are expressed in photons and not ergs.

FIG. 4
FIG. 4

Energy level diagrams for the Na i and O i isoelectronic sequences. The lines used to obtain the ratios in Figs. 5 and 7 are shown.

FIG. 5
FIG. 5

Density-sensitive line ratios calculated for ions of the Na i isoelectronic sequence. The intensities are expressed in photons and not ergs.

FIG. 6
FIG. 6

The temperature sensitivity of line intensity ratios in the Na i isoelectronic sequence (see text for discussion). T0 is the equilibrium temperature of maximum emitting efficiency.

FIG. 7
FIG. 7

Density-sensitive line ratios calculated for ions of the O i isoelectronic sequence. The intensities are expressed in photons and not ergs.

FIG. 8
FIG. 8

Energy level diagram for the Be i isoelectronic sequence. The lines used to obtain the ratios in Fig. 9 are shown.

FIG. 9
FIG. 9

Density-sensitive line ratios calculated for ions of the Be i isoelectronic sequence. The intensities are expressed in photons and not ergs.

FIG. 10
FIG. 10

The effect of the double electron excitation, 2s2 1S0– 2p2 3P, on the indicated line intensity ratio for Ca xvii.

FIG. 11
FIG. 11

Forbidden lines of highly ionized ions, recorded in spectra of the solar corona (see Table I). The x’s represent points on Gaussian profiles.

FIG. 12
FIG. 12

Low-inductance vacuum spark spectra of lines of Fe ix and Fe xviii. The structure in the profiles is probably real, and some of the braodening may be due to intense magnetic fields.

FIG. 13
FIG. 13

The full width at half-maximum (Δλ) as a function of temperature or magnetic field for ions of tungsten and iron at 100 Å. T indicates thermal Doppler broadening; H indicates broadening due to the Paschen-Back effect. At a given temperature, the thermal broadening is less for the heavier element, tungsten.

Tables (2)

Tables Icon

TABLE I Forbidden Lines between 1100 and 2000 Å (Spectrum A). Numbers in parentheses are intensities from Spectrum B. Spectrum A and B were recorded about 40 above the solar limb. The slit was tangent to the limb. The spectrograph used was the NRL instrument flown on Skylab. Predicted and calculated wavelengths are from Edlén, 9,29 Svensson, 30 Svensson, Ekberg, and Edlén, 31 and Jordan. 32 The O vii wavelengths are from Engelhardt and Sommer. 33 The Fe x lines were identified by Smitt. 34.

Tables Icon

TABLE II Observed forbidden lines for λ > 2000 Å (spectrum B).

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

I 21 I 31 = n 2 A 21 n 3 A 31 = [ C 13 C 32 + C 12 C 32 + C 12 C 31 + ( C 13 C 32 + C 12 A 32 + C 12 A 31 ) / N e ] A 21 ( C 12 C 23 + C 13 C 23 + C 13 C 21 + C 13 A 21 / N e ) A 31 .
I 21 I 31 N e 0 C 12 A 31 + C 13 A 32 + C 12 A 32 C 13 A 31 .
I 21 I 31 N e ( C 13 C 32 + C 12 C 32 + C 12 C 31 ) A 21 ( C 12 C 23 + C 13 C 23 + C 13 C 21 ) A 31 .
C i j = 2.7 × 10 15 f i j g ¯ i j exp ( Δ E i j / k T e ) ( T e ) 1 / 2 Δ E i j ,
C i j = ( ω i / ω j ) C i j exp ( Δ E i j / k T e ) ,
I 32 I 21 = ( C 12 C 23 + C 13 C 23 + C 13 C 21 + C 13 A 21 / N e ) A 32 [ C 13 C 32 + C 12 C 32 + C 12 C 31 + ( C 13 A 32 + C 12 A 32 + C 12 C 31 ) / N e ] A 21 .
I 32 I 21 N e 0 C 13 A 32 C 13 A 32 + C 12 A 32 + C 12 + A 31 C 13 C 12 .
I 32 I 21 N e ( C 12 C 23 + C 13 A 23 + C 13 C 21 ) A 32 C 13 C 32 + C 12 C 32 + C 12 C 31 A 21 C 23 A 32 C 32 A 21 ,
N e 6. 1 × 10 22 ω i ( T e ) 1 / 2 g ¯ i j λ 3 ω j ,