Abstract

High-intensity (1013–1017 W/cm2) 1.06 μm laser light absorption experiments with spherical and planar targets suggest that inverse bremsstrahlung absorption is not the dominant absorption mechanism. Evidence is presented that resonance absorption together with ponderomotive force effects such as filamentation and density profile steepening strongly influence the laser light absorption.

© 1977 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. A. Glaze, “High Energy Glass Laser,” Opt. Eng. 15, 136–142 (1976).
    [Crossref]
  2. D. R. Speck and F. Rienecker, Lawrence Livermore Lab. Report No. UCRL 50021–74, 35 (1974) (unpublished).
  3. S. Thomas, Appl. Opt. 14, 1267 (1975).
    [Crossref] [PubMed]
  4. K. A. Brueckner and J. E. Howard, Appl. Opt. 14, 1274 (1975).
    [Crossref] [PubMed]
  5. C. R. Phipps, S. E. Bodner, and J. W. Shearer, Appl. Opt. 14, 985 (1975).
    [Crossref] [PubMed]
  6. J. A. Monjes and E. K. Storm, “4π Steradian Irradiation System,” Lawrence Livermore Lab Report No. UCRL-50021-75 (unpublished).
  7. S. S. Glaros and A. J. Glass, “Compound Ellipsoidal Focusing System for Fusion Lasers”, in the Proceedings of the Sixth Symposium on Engineering Problems of Fusion Research, San Diego, California, November 18–21, 1975 (unpublished).
  8. M. Born and E. Wolf, Principles of Optics (Pergamon, New York, 1964), Chap. 8, p. 435.
  9. J. F. Holzrichter and D. R. Speck, J. Appl. Phys. 47, 2459, (1976).
    [Crossref]
  10. V. Rupert, Lawrence Livermore Lab. Report No. UCRL-77068 (1975) (unpublished).
  11. D. W. Phillion, R. A. Lerche, V. C. Rupert, and S. R. Gunn, “Light Scattering and Energy Measurements for Laser Fusion Targets” presented at the 1976 IEEE International Conference on Plasma ScienceMay 24–26, 1976 (unpublished).
  12. V. Rupert, “Absorption Measurements for Laser Fusion Targets” (unpublished).
  13. J. Dawson, P. Kaw, and B. Green, Phys. Fluids 12, 875 (1969).
    [Crossref]
  14. W. L. Kruer, “Theoretical Interpretations of Enhanced Laser Light Absorption,” Progress in Lasers and Laser Fusion, edited by B. Kursunoglu, A. Perlmutter, and S. M. Widmayer, (Plenum, New York, 1975), pp. 5–26.
    [Crossref]
  15. E. Fabre and C. Stenz, Phys. Rev. Lett. 32, 823 (1974).
    [Crossref]
  16. V. W. Slivinsky, H. N. Kornblum, and H. D. Shay, J. Appl. Phys. 46, 1973 (1975).
    [Crossref]
  17. C. Yamonoka, M. Yokoyama, S. Nakai, T. Sasaki, K. Yoshida, M. Motova, C. Yamabe, T. Tuschudi, T. Yamanaka, J. Mizui, N. Yamaguchi, and K. Nishikawa, IAEA-CN-33/F 3-5, in Plasma Physics and Controlled Nuclear Fusion Research 1974, Fifth IAEA Conference Proceedings, Tokyo, 11–15 November 1974.
  18. K. G. Estabrook, E. J. Valeo, and W. L. Kruer, Phys. Fluids 18, 1151 (1975).
    [Crossref]
  19. C. F. McConaghy and L. W. Coleman, Appl. Phys. Lett. 25, 268 (1974).
    [Crossref]
  20. L. W. Coleman and C. F. McCanaghy, Proceedings of the Eleventh International Conference on High Speed Photography (Chapman and Hall, London, 1975), pp. 196–201.
    [Crossref]
  21. G. I. Brukhnevitch and et al., Phys. Lett. (Amsterdam) 51, 249 (1975).
  22. D. J. Bradley and et al., Opt. Commun. (Amsterdam) 15, 231 (1975).
    [Crossref]
  23. D. T. Attwood, L. W. Coleman, J. T. Larsen, and E. K. Storm (unpublished).
  24. A. J. Lieber, R. F. Benjamin, H. D. Sutphin, and C. B. Webb, Nucl. Instrum. Methods 127, 87 (1975).
    [Crossref]
  25. V. W. Slivinsky, H. G. Ahlstrom, K. G. Tirsell, J. Larsen, S. Glaros, G. Zimmerman, and H. Shay, “Measurement of the Ion Temperature in Laser Driven Fusion,” Phys. Rev. 35, 1083 (1975).
  26. W. L. Kruer, “Recent Developments in Laser Plasma Theory and Simulations,” presented at the August 6, 1976Gordon Research Conference, Tilton, N. H. (unpublished).
  27. J. H. Erkkila, “Laser Light Scattering and Absorption in Dense, Spherically Symmetric Plasmas,” Ph. D. thesis (University of California, 1975) (unpublished), Lawrence Livermore Lab. Report No. UCRL-51914.
  28. H. Hora, Phys. Fluids 12, 182 (1969).
    [Crossref]
  29. H. Hora, Z. Phys. 226, 156 (1969).
    [Crossref]
  30. H. Hora, Opto-Electron 2, 201 (1970).
    [Crossref]
  31. H. Hora, in Laser Interaction and Related Plasma Phenomena, edited by H. J. Schwarz and H. Hora (Plenun, New York, 1971), p. 383.
  32. R. Kidder, “Interaction of Intense Photon Beams with Plasmas (II),” Proceedings of the Japan–U.S. Seminar on Laser Interaction with Matter, Kyoto, JapanSeptember 25, 1972 (unpublished).
  33. J. W. Shearer and J. L. Eddleman, Phys. Fluids 16, 1753 (1973).
    [Crossref]
  34. A. Bruce Langdon and Barbara F. Lasinski, Phys. Rev. Lett. 34, 834 (1975).
  35. P. Kaw, G. Schmidt, and T. Wilcox, Phys. Fluids 16, 1522 (1973).
    [Crossref]
  36. E. J. Valeo and K. G. Estabrook, Phys. Rev. Lett. 34, 1008 (1975).
    [Crossref]
  37. C. E. Max, Phys. Fluids 19, 74 (1976).
    [Crossref]
  38. R. A. Haas, M. J. Boyle, K. R. Manes, and J. E. Swain, J. Appl. Phys. 47, 1318 (1976).
    [Crossref]
  39. T. P. Donaldson and I. J. Spalding, Phys. Rev. Lett. 36, 467 (1976).
    [Crossref]
  40. M. Born and E. Wolf, Principles of Optics (Pergamon, New York, 1964), Chap. 3.
  41. D. Phillion, “Evidence for Short Density Scale Heights at the Critical Density Surface in Laser Irradiated Plasmas” (unpublished).

1976 (5)

J. A. Glaze, “High Energy Glass Laser,” Opt. Eng. 15, 136–142 (1976).
[Crossref]

J. F. Holzrichter and D. R. Speck, J. Appl. Phys. 47, 2459, (1976).
[Crossref]

C. E. Max, Phys. Fluids 19, 74 (1976).
[Crossref]

R. A. Haas, M. J. Boyle, K. R. Manes, and J. E. Swain, J. Appl. Phys. 47, 1318 (1976).
[Crossref]

T. P. Donaldson and I. J. Spalding, Phys. Rev. Lett. 36, 467 (1976).
[Crossref]

1975 (11)

E. J. Valeo and K. G. Estabrook, Phys. Rev. Lett. 34, 1008 (1975).
[Crossref]

V. W. Slivinsky, H. N. Kornblum, and H. D. Shay, J. Appl. Phys. 46, 1973 (1975).
[Crossref]

K. G. Estabrook, E. J. Valeo, and W. L. Kruer, Phys. Fluids 18, 1151 (1975).
[Crossref]

S. Thomas, Appl. Opt. 14, 1267 (1975).
[Crossref] [PubMed]

K. A. Brueckner and J. E. Howard, Appl. Opt. 14, 1274 (1975).
[Crossref] [PubMed]

C. R. Phipps, S. E. Bodner, and J. W. Shearer, Appl. Opt. 14, 985 (1975).
[Crossref] [PubMed]

G. I. Brukhnevitch and et al., Phys. Lett. (Amsterdam) 51, 249 (1975).

D. J. Bradley and et al., Opt. Commun. (Amsterdam) 15, 231 (1975).
[Crossref]

A. J. Lieber, R. F. Benjamin, H. D. Sutphin, and C. B. Webb, Nucl. Instrum. Methods 127, 87 (1975).
[Crossref]

V. W. Slivinsky, H. G. Ahlstrom, K. G. Tirsell, J. Larsen, S. Glaros, G. Zimmerman, and H. Shay, “Measurement of the Ion Temperature in Laser Driven Fusion,” Phys. Rev. 35, 1083 (1975).

A. Bruce Langdon and Barbara F. Lasinski, Phys. Rev. Lett. 34, 834 (1975).

1974 (2)

E. Fabre and C. Stenz, Phys. Rev. Lett. 32, 823 (1974).
[Crossref]

C. F. McConaghy and L. W. Coleman, Appl. Phys. Lett. 25, 268 (1974).
[Crossref]

1973 (2)

P. Kaw, G. Schmidt, and T. Wilcox, Phys. Fluids 16, 1522 (1973).
[Crossref]

J. W. Shearer and J. L. Eddleman, Phys. Fluids 16, 1753 (1973).
[Crossref]

1970 (1)

H. Hora, Opto-Electron 2, 201 (1970).
[Crossref]

1969 (3)

H. Hora, Phys. Fluids 12, 182 (1969).
[Crossref]

H. Hora, Z. Phys. 226, 156 (1969).
[Crossref]

J. Dawson, P. Kaw, and B. Green, Phys. Fluids 12, 875 (1969).
[Crossref]

Ahlstrom, H. G.

V. W. Slivinsky, H. G. Ahlstrom, K. G. Tirsell, J. Larsen, S. Glaros, G. Zimmerman, and H. Shay, “Measurement of the Ion Temperature in Laser Driven Fusion,” Phys. Rev. 35, 1083 (1975).

Attwood, D. T.

D. T. Attwood, L. W. Coleman, J. T. Larsen, and E. K. Storm (unpublished).

Benjamin, R. F.

A. J. Lieber, R. F. Benjamin, H. D. Sutphin, and C. B. Webb, Nucl. Instrum. Methods 127, 87 (1975).
[Crossref]

Bodner, S. E.

Born, M.

M. Born and E. Wolf, Principles of Optics (Pergamon, New York, 1964), Chap. 3.

M. Born and E. Wolf, Principles of Optics (Pergamon, New York, 1964), Chap. 8, p. 435.

Boyle, M. J.

R. A. Haas, M. J. Boyle, K. R. Manes, and J. E. Swain, J. Appl. Phys. 47, 1318 (1976).
[Crossref]

Bradley, D. J.

D. J. Bradley and et al., Opt. Commun. (Amsterdam) 15, 231 (1975).
[Crossref]

Bruce Langdon, A.

A. Bruce Langdon and Barbara F. Lasinski, Phys. Rev. Lett. 34, 834 (1975).

Brueckner, K. A.

Brukhnevitch, G. I.

G. I. Brukhnevitch and et al., Phys. Lett. (Amsterdam) 51, 249 (1975).

Coleman, L. W.

C. F. McConaghy and L. W. Coleman, Appl. Phys. Lett. 25, 268 (1974).
[Crossref]

L. W. Coleman and C. F. McCanaghy, Proceedings of the Eleventh International Conference on High Speed Photography (Chapman and Hall, London, 1975), pp. 196–201.
[Crossref]

D. T. Attwood, L. W. Coleman, J. T. Larsen, and E. K. Storm (unpublished).

Dawson, J.

J. Dawson, P. Kaw, and B. Green, Phys. Fluids 12, 875 (1969).
[Crossref]

Donaldson, T. P.

T. P. Donaldson and I. J. Spalding, Phys. Rev. Lett. 36, 467 (1976).
[Crossref]

Eddleman, J. L.

J. W. Shearer and J. L. Eddleman, Phys. Fluids 16, 1753 (1973).
[Crossref]

Erkkila, J. H.

J. H. Erkkila, “Laser Light Scattering and Absorption in Dense, Spherically Symmetric Plasmas,” Ph. D. thesis (University of California, 1975) (unpublished), Lawrence Livermore Lab. Report No. UCRL-51914.

Estabrook, K. G.

K. G. Estabrook, E. J. Valeo, and W. L. Kruer, Phys. Fluids 18, 1151 (1975).
[Crossref]

E. J. Valeo and K. G. Estabrook, Phys. Rev. Lett. 34, 1008 (1975).
[Crossref]

Fabre, E.

E. Fabre and C. Stenz, Phys. Rev. Lett. 32, 823 (1974).
[Crossref]

Glaros, S.

V. W. Slivinsky, H. G. Ahlstrom, K. G. Tirsell, J. Larsen, S. Glaros, G. Zimmerman, and H. Shay, “Measurement of the Ion Temperature in Laser Driven Fusion,” Phys. Rev. 35, 1083 (1975).

Glaros, S. S.

S. S. Glaros and A. J. Glass, “Compound Ellipsoidal Focusing System for Fusion Lasers”, in the Proceedings of the Sixth Symposium on Engineering Problems of Fusion Research, San Diego, California, November 18–21, 1975 (unpublished).

Glass, A. J.

S. S. Glaros and A. J. Glass, “Compound Ellipsoidal Focusing System for Fusion Lasers”, in the Proceedings of the Sixth Symposium on Engineering Problems of Fusion Research, San Diego, California, November 18–21, 1975 (unpublished).

Glaze, J. A.

J. A. Glaze, “High Energy Glass Laser,” Opt. Eng. 15, 136–142 (1976).
[Crossref]

Green, B.

J. Dawson, P. Kaw, and B. Green, Phys. Fluids 12, 875 (1969).
[Crossref]

Gunn, S. R.

D. W. Phillion, R. A. Lerche, V. C. Rupert, and S. R. Gunn, “Light Scattering and Energy Measurements for Laser Fusion Targets” presented at the 1976 IEEE International Conference on Plasma ScienceMay 24–26, 1976 (unpublished).

Haas, R. A.

R. A. Haas, M. J. Boyle, K. R. Manes, and J. E. Swain, J. Appl. Phys. 47, 1318 (1976).
[Crossref]

Holzrichter, J. F.

J. F. Holzrichter and D. R. Speck, J. Appl. Phys. 47, 2459, (1976).
[Crossref]

Hora, H.

H. Hora, Opto-Electron 2, 201 (1970).
[Crossref]

H. Hora, Phys. Fluids 12, 182 (1969).
[Crossref]

H. Hora, Z. Phys. 226, 156 (1969).
[Crossref]

H. Hora, in Laser Interaction and Related Plasma Phenomena, edited by H. J. Schwarz and H. Hora (Plenun, New York, 1971), p. 383.

Howard, J. E.

Kaw, P.

P. Kaw, G. Schmidt, and T. Wilcox, Phys. Fluids 16, 1522 (1973).
[Crossref]

J. Dawson, P. Kaw, and B. Green, Phys. Fluids 12, 875 (1969).
[Crossref]

Kidder, R.

R. Kidder, “Interaction of Intense Photon Beams with Plasmas (II),” Proceedings of the Japan–U.S. Seminar on Laser Interaction with Matter, Kyoto, JapanSeptember 25, 1972 (unpublished).

Kornblum, H. N.

V. W. Slivinsky, H. N. Kornblum, and H. D. Shay, J. Appl. Phys. 46, 1973 (1975).
[Crossref]

Kruer, W. L.

K. G. Estabrook, E. J. Valeo, and W. L. Kruer, Phys. Fluids 18, 1151 (1975).
[Crossref]

W. L. Kruer, “Recent Developments in Laser Plasma Theory and Simulations,” presented at the August 6, 1976Gordon Research Conference, Tilton, N. H. (unpublished).

W. L. Kruer, “Theoretical Interpretations of Enhanced Laser Light Absorption,” Progress in Lasers and Laser Fusion, edited by B. Kursunoglu, A. Perlmutter, and S. M. Widmayer, (Plenum, New York, 1975), pp. 5–26.
[Crossref]

Larsen, J.

V. W. Slivinsky, H. G. Ahlstrom, K. G. Tirsell, J. Larsen, S. Glaros, G. Zimmerman, and H. Shay, “Measurement of the Ion Temperature in Laser Driven Fusion,” Phys. Rev. 35, 1083 (1975).

Larsen, J. T.

D. T. Attwood, L. W. Coleman, J. T. Larsen, and E. K. Storm (unpublished).

Lasinski, Barbara F.

A. Bruce Langdon and Barbara F. Lasinski, Phys. Rev. Lett. 34, 834 (1975).

Lerche, R. A.

D. W. Phillion, R. A. Lerche, V. C. Rupert, and S. R. Gunn, “Light Scattering and Energy Measurements for Laser Fusion Targets” presented at the 1976 IEEE International Conference on Plasma ScienceMay 24–26, 1976 (unpublished).

Lieber, A. J.

A. J. Lieber, R. F. Benjamin, H. D. Sutphin, and C. B. Webb, Nucl. Instrum. Methods 127, 87 (1975).
[Crossref]

Manes, K. R.

R. A. Haas, M. J. Boyle, K. R. Manes, and J. E. Swain, J. Appl. Phys. 47, 1318 (1976).
[Crossref]

Max, C. E.

C. E. Max, Phys. Fluids 19, 74 (1976).
[Crossref]

McCanaghy, C. F.

L. W. Coleman and C. F. McCanaghy, Proceedings of the Eleventh International Conference on High Speed Photography (Chapman and Hall, London, 1975), pp. 196–201.
[Crossref]

McConaghy, C. F.

C. F. McConaghy and L. W. Coleman, Appl. Phys. Lett. 25, 268 (1974).
[Crossref]

Mizui, J.

C. Yamonoka, M. Yokoyama, S. Nakai, T. Sasaki, K. Yoshida, M. Motova, C. Yamabe, T. Tuschudi, T. Yamanaka, J. Mizui, N. Yamaguchi, and K. Nishikawa, IAEA-CN-33/F 3-5, in Plasma Physics and Controlled Nuclear Fusion Research 1974, Fifth IAEA Conference Proceedings, Tokyo, 11–15 November 1974.

Monjes, J. A.

J. A. Monjes and E. K. Storm, “4π Steradian Irradiation System,” Lawrence Livermore Lab Report No. UCRL-50021-75 (unpublished).

Motova, M.

C. Yamonoka, M. Yokoyama, S. Nakai, T. Sasaki, K. Yoshida, M. Motova, C. Yamabe, T. Tuschudi, T. Yamanaka, J. Mizui, N. Yamaguchi, and K. Nishikawa, IAEA-CN-33/F 3-5, in Plasma Physics and Controlled Nuclear Fusion Research 1974, Fifth IAEA Conference Proceedings, Tokyo, 11–15 November 1974.

Nakai, S.

C. Yamonoka, M. Yokoyama, S. Nakai, T. Sasaki, K. Yoshida, M. Motova, C. Yamabe, T. Tuschudi, T. Yamanaka, J. Mizui, N. Yamaguchi, and K. Nishikawa, IAEA-CN-33/F 3-5, in Plasma Physics and Controlled Nuclear Fusion Research 1974, Fifth IAEA Conference Proceedings, Tokyo, 11–15 November 1974.

Nishikawa, K.

C. Yamonoka, M. Yokoyama, S. Nakai, T. Sasaki, K. Yoshida, M. Motova, C. Yamabe, T. Tuschudi, T. Yamanaka, J. Mizui, N. Yamaguchi, and K. Nishikawa, IAEA-CN-33/F 3-5, in Plasma Physics and Controlled Nuclear Fusion Research 1974, Fifth IAEA Conference Proceedings, Tokyo, 11–15 November 1974.

Phillion, D.

D. Phillion, “Evidence for Short Density Scale Heights at the Critical Density Surface in Laser Irradiated Plasmas” (unpublished).

Phillion, D. W.

D. W. Phillion, R. A. Lerche, V. C. Rupert, and S. R. Gunn, “Light Scattering and Energy Measurements for Laser Fusion Targets” presented at the 1976 IEEE International Conference on Plasma ScienceMay 24–26, 1976 (unpublished).

Phipps, C. R.

Rienecker, F.

D. R. Speck and F. Rienecker, Lawrence Livermore Lab. Report No. UCRL 50021–74, 35 (1974) (unpublished).

Rupert, V.

V. Rupert, Lawrence Livermore Lab. Report No. UCRL-77068 (1975) (unpublished).

V. Rupert, “Absorption Measurements for Laser Fusion Targets” (unpublished).

Rupert, V. C.

D. W. Phillion, R. A. Lerche, V. C. Rupert, and S. R. Gunn, “Light Scattering and Energy Measurements for Laser Fusion Targets” presented at the 1976 IEEE International Conference on Plasma ScienceMay 24–26, 1976 (unpublished).

Sasaki, T.

C. Yamonoka, M. Yokoyama, S. Nakai, T. Sasaki, K. Yoshida, M. Motova, C. Yamabe, T. Tuschudi, T. Yamanaka, J. Mizui, N. Yamaguchi, and K. Nishikawa, IAEA-CN-33/F 3-5, in Plasma Physics and Controlled Nuclear Fusion Research 1974, Fifth IAEA Conference Proceedings, Tokyo, 11–15 November 1974.

Schmidt, G.

P. Kaw, G. Schmidt, and T. Wilcox, Phys. Fluids 16, 1522 (1973).
[Crossref]

Shay, H.

V. W. Slivinsky, H. G. Ahlstrom, K. G. Tirsell, J. Larsen, S. Glaros, G. Zimmerman, and H. Shay, “Measurement of the Ion Temperature in Laser Driven Fusion,” Phys. Rev. 35, 1083 (1975).

Shay, H. D.

V. W. Slivinsky, H. N. Kornblum, and H. D. Shay, J. Appl. Phys. 46, 1973 (1975).
[Crossref]

Shearer, J. W.

Slivinsky, V. W.

V. W. Slivinsky, H. G. Ahlstrom, K. G. Tirsell, J. Larsen, S. Glaros, G. Zimmerman, and H. Shay, “Measurement of the Ion Temperature in Laser Driven Fusion,” Phys. Rev. 35, 1083 (1975).

V. W. Slivinsky, H. N. Kornblum, and H. D. Shay, J. Appl. Phys. 46, 1973 (1975).
[Crossref]

Spalding, I. J.

T. P. Donaldson and I. J. Spalding, Phys. Rev. Lett. 36, 467 (1976).
[Crossref]

Speck, D. R.

J. F. Holzrichter and D. R. Speck, J. Appl. Phys. 47, 2459, (1976).
[Crossref]

D. R. Speck and F. Rienecker, Lawrence Livermore Lab. Report No. UCRL 50021–74, 35 (1974) (unpublished).

Stenz, C.

E. Fabre and C. Stenz, Phys. Rev. Lett. 32, 823 (1974).
[Crossref]

Storm, E. K.

J. A. Monjes and E. K. Storm, “4π Steradian Irradiation System,” Lawrence Livermore Lab Report No. UCRL-50021-75 (unpublished).

D. T. Attwood, L. W. Coleman, J. T. Larsen, and E. K. Storm (unpublished).

Sutphin, H. D.

A. J. Lieber, R. F. Benjamin, H. D. Sutphin, and C. B. Webb, Nucl. Instrum. Methods 127, 87 (1975).
[Crossref]

Swain, J. E.

R. A. Haas, M. J. Boyle, K. R. Manes, and J. E. Swain, J. Appl. Phys. 47, 1318 (1976).
[Crossref]

Thomas, S.

Tirsell, K. G.

V. W. Slivinsky, H. G. Ahlstrom, K. G. Tirsell, J. Larsen, S. Glaros, G. Zimmerman, and H. Shay, “Measurement of the Ion Temperature in Laser Driven Fusion,” Phys. Rev. 35, 1083 (1975).

Tuschudi, T.

C. Yamonoka, M. Yokoyama, S. Nakai, T. Sasaki, K. Yoshida, M. Motova, C. Yamabe, T. Tuschudi, T. Yamanaka, J. Mizui, N. Yamaguchi, and K. Nishikawa, IAEA-CN-33/F 3-5, in Plasma Physics and Controlled Nuclear Fusion Research 1974, Fifth IAEA Conference Proceedings, Tokyo, 11–15 November 1974.

Valeo, E. J.

K. G. Estabrook, E. J. Valeo, and W. L. Kruer, Phys. Fluids 18, 1151 (1975).
[Crossref]

E. J. Valeo and K. G. Estabrook, Phys. Rev. Lett. 34, 1008 (1975).
[Crossref]

Webb, C. B.

A. J. Lieber, R. F. Benjamin, H. D. Sutphin, and C. B. Webb, Nucl. Instrum. Methods 127, 87 (1975).
[Crossref]

Wilcox, T.

P. Kaw, G. Schmidt, and T. Wilcox, Phys. Fluids 16, 1522 (1973).
[Crossref]

Wolf, E.

M. Born and E. Wolf, Principles of Optics (Pergamon, New York, 1964), Chap. 3.

M. Born and E. Wolf, Principles of Optics (Pergamon, New York, 1964), Chap. 8, p. 435.

Yamabe, C.

C. Yamonoka, M. Yokoyama, S. Nakai, T. Sasaki, K. Yoshida, M. Motova, C. Yamabe, T. Tuschudi, T. Yamanaka, J. Mizui, N. Yamaguchi, and K. Nishikawa, IAEA-CN-33/F 3-5, in Plasma Physics and Controlled Nuclear Fusion Research 1974, Fifth IAEA Conference Proceedings, Tokyo, 11–15 November 1974.

Yamaguchi, N.

C. Yamonoka, M. Yokoyama, S. Nakai, T. Sasaki, K. Yoshida, M. Motova, C. Yamabe, T. Tuschudi, T. Yamanaka, J. Mizui, N. Yamaguchi, and K. Nishikawa, IAEA-CN-33/F 3-5, in Plasma Physics and Controlled Nuclear Fusion Research 1974, Fifth IAEA Conference Proceedings, Tokyo, 11–15 November 1974.

Yamanaka, T.

C. Yamonoka, M. Yokoyama, S. Nakai, T. Sasaki, K. Yoshida, M. Motova, C. Yamabe, T. Tuschudi, T. Yamanaka, J. Mizui, N. Yamaguchi, and K. Nishikawa, IAEA-CN-33/F 3-5, in Plasma Physics and Controlled Nuclear Fusion Research 1974, Fifth IAEA Conference Proceedings, Tokyo, 11–15 November 1974.

Yamonoka, C.

C. Yamonoka, M. Yokoyama, S. Nakai, T. Sasaki, K. Yoshida, M. Motova, C. Yamabe, T. Tuschudi, T. Yamanaka, J. Mizui, N. Yamaguchi, and K. Nishikawa, IAEA-CN-33/F 3-5, in Plasma Physics and Controlled Nuclear Fusion Research 1974, Fifth IAEA Conference Proceedings, Tokyo, 11–15 November 1974.

Yokoyama, M.

C. Yamonoka, M. Yokoyama, S. Nakai, T. Sasaki, K. Yoshida, M. Motova, C. Yamabe, T. Tuschudi, T. Yamanaka, J. Mizui, N. Yamaguchi, and K. Nishikawa, IAEA-CN-33/F 3-5, in Plasma Physics and Controlled Nuclear Fusion Research 1974, Fifth IAEA Conference Proceedings, Tokyo, 11–15 November 1974.

Yoshida, K.

C. Yamonoka, M. Yokoyama, S. Nakai, T. Sasaki, K. Yoshida, M. Motova, C. Yamabe, T. Tuschudi, T. Yamanaka, J. Mizui, N. Yamaguchi, and K. Nishikawa, IAEA-CN-33/F 3-5, in Plasma Physics and Controlled Nuclear Fusion Research 1974, Fifth IAEA Conference Proceedings, Tokyo, 11–15 November 1974.

Zimmerman, G.

V. W. Slivinsky, H. G. Ahlstrom, K. G. Tirsell, J. Larsen, S. Glaros, G. Zimmerman, and H. Shay, “Measurement of the Ion Temperature in Laser Driven Fusion,” Phys. Rev. 35, 1083 (1975).

Appl. Opt. (3)

Appl. Phys. Lett. (1)

C. F. McConaghy and L. W. Coleman, Appl. Phys. Lett. 25, 268 (1974).
[Crossref]

J. Appl. Phys. (3)

J. F. Holzrichter and D. R. Speck, J. Appl. Phys. 47, 2459, (1976).
[Crossref]

V. W. Slivinsky, H. N. Kornblum, and H. D. Shay, J. Appl. Phys. 46, 1973 (1975).
[Crossref]

R. A. Haas, M. J. Boyle, K. R. Manes, and J. E. Swain, J. Appl. Phys. 47, 1318 (1976).
[Crossref]

Nucl. Instrum. Methods (1)

A. J. Lieber, R. F. Benjamin, H. D. Sutphin, and C. B. Webb, Nucl. Instrum. Methods 127, 87 (1975).
[Crossref]

Opt. Commun. (Amsterdam) (1)

D. J. Bradley and et al., Opt. Commun. (Amsterdam) 15, 231 (1975).
[Crossref]

Opt. Eng. (1)

J. A. Glaze, “High Energy Glass Laser,” Opt. Eng. 15, 136–142 (1976).
[Crossref]

Opto-Electron (1)

H. Hora, Opto-Electron 2, 201 (1970).
[Crossref]

Phys. Fluids (6)

H. Hora, Phys. Fluids 12, 182 (1969).
[Crossref]

J. W. Shearer and J. L. Eddleman, Phys. Fluids 16, 1753 (1973).
[Crossref]

P. Kaw, G. Schmidt, and T. Wilcox, Phys. Fluids 16, 1522 (1973).
[Crossref]

J. Dawson, P. Kaw, and B. Green, Phys. Fluids 12, 875 (1969).
[Crossref]

K. G. Estabrook, E. J. Valeo, and W. L. Kruer, Phys. Fluids 18, 1151 (1975).
[Crossref]

C. E. Max, Phys. Fluids 19, 74 (1976).
[Crossref]

Phys. Lett. (Amsterdam) (1)

G. I. Brukhnevitch and et al., Phys. Lett. (Amsterdam) 51, 249 (1975).

Phys. Rev. (1)

V. W. Slivinsky, H. G. Ahlstrom, K. G. Tirsell, J. Larsen, S. Glaros, G. Zimmerman, and H. Shay, “Measurement of the Ion Temperature in Laser Driven Fusion,” Phys. Rev. 35, 1083 (1975).

Phys. Rev. Lett. (4)

E. J. Valeo and K. G. Estabrook, Phys. Rev. Lett. 34, 1008 (1975).
[Crossref]

A. Bruce Langdon and Barbara F. Lasinski, Phys. Rev. Lett. 34, 834 (1975).

E. Fabre and C. Stenz, Phys. Rev. Lett. 32, 823 (1974).
[Crossref]

T. P. Donaldson and I. J. Spalding, Phys. Rev. Lett. 36, 467 (1976).
[Crossref]

Z. Phys. (1)

H. Hora, Z. Phys. 226, 156 (1969).
[Crossref]

Other (17)

H. Hora, in Laser Interaction and Related Plasma Phenomena, edited by H. J. Schwarz and H. Hora (Plenun, New York, 1971), p. 383.

R. Kidder, “Interaction of Intense Photon Beams with Plasmas (II),” Proceedings of the Japan–U.S. Seminar on Laser Interaction with Matter, Kyoto, JapanSeptember 25, 1972 (unpublished).

W. L. Kruer, “Recent Developments in Laser Plasma Theory and Simulations,” presented at the August 6, 1976Gordon Research Conference, Tilton, N. H. (unpublished).

J. H. Erkkila, “Laser Light Scattering and Absorption in Dense, Spherically Symmetric Plasmas,” Ph. D. thesis (University of California, 1975) (unpublished), Lawrence Livermore Lab. Report No. UCRL-51914.

D. T. Attwood, L. W. Coleman, J. T. Larsen, and E. K. Storm (unpublished).

L. W. Coleman and C. F. McCanaghy, Proceedings of the Eleventh International Conference on High Speed Photography (Chapman and Hall, London, 1975), pp. 196–201.
[Crossref]

C. Yamonoka, M. Yokoyama, S. Nakai, T. Sasaki, K. Yoshida, M. Motova, C. Yamabe, T. Tuschudi, T. Yamanaka, J. Mizui, N. Yamaguchi, and K. Nishikawa, IAEA-CN-33/F 3-5, in Plasma Physics and Controlled Nuclear Fusion Research 1974, Fifth IAEA Conference Proceedings, Tokyo, 11–15 November 1974.

W. L. Kruer, “Theoretical Interpretations of Enhanced Laser Light Absorption,” Progress in Lasers and Laser Fusion, edited by B. Kursunoglu, A. Perlmutter, and S. M. Widmayer, (Plenum, New York, 1975), pp. 5–26.
[Crossref]

D. R. Speck and F. Rienecker, Lawrence Livermore Lab. Report No. UCRL 50021–74, 35 (1974) (unpublished).

V. Rupert, Lawrence Livermore Lab. Report No. UCRL-77068 (1975) (unpublished).

D. W. Phillion, R. A. Lerche, V. C. Rupert, and S. R. Gunn, “Light Scattering and Energy Measurements for Laser Fusion Targets” presented at the 1976 IEEE International Conference on Plasma ScienceMay 24–26, 1976 (unpublished).

V. Rupert, “Absorption Measurements for Laser Fusion Targets” (unpublished).

J. A. Monjes and E. K. Storm, “4π Steradian Irradiation System,” Lawrence Livermore Lab Report No. UCRL-50021-75 (unpublished).

S. S. Glaros and A. J. Glass, “Compound Ellipsoidal Focusing System for Fusion Lasers”, in the Proceedings of the Sixth Symposium on Engineering Problems of Fusion Research, San Diego, California, November 18–21, 1975 (unpublished).

M. Born and E. Wolf, Principles of Optics (Pergamon, New York, 1964), Chap. 8, p. 435.

M. Born and E. Wolf, Principles of Optics (Pergamon, New York, 1964), Chap. 3.

D. Phillion, “Evidence for Short Density Scale Heights at the Critical Density Surface in Laser Irradiated Plasmas” (unpublished).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (19)

FIG. 1
FIG. 1

Cyclops target alignment system: The cw 1.06 μm alignment laser beam which propagates through the amplifier chain illuminates the target through rotating diffusers. With the diffusers removed, the laser beams may be accurately placed on the target.

FIG. 2
FIG. 2

The vidicon display of this disk target permits the laser spot to be sized and located in its center.

FIG. 3
FIG. 3

Densitometered equivalent plane multiple image camera and streak camera images provide our best information on the irradiation history of the target. The time integrated photograph shows that the beam was highly structured while the streak camera shows that the focal plane moved during the pulse and small-scale self-focusing removed energy from the beam at the peak of the pulse.

FIG. 4
FIG. 4

Si PIN diodes arrayed around the target collect scattered laser light in and out of the incident beam’s plane of polarization. Calorimeters are provided to measure incident and scattered 1.06 μm radiation.

FIG. 5
FIG. 5

(a) This enclosing box calorimeter is designed for use with f/1 lenses. Besides the beam ports, openings are provided for the target holder and several diagnostic devices. (b) Radiation and charged particles coming from the target first encounter the WG280 ion shield. Scattered 1.06 μm light is transmitted by this shield and is absorbed by the BG-18 glass. The subsequent temperature rise of the BG-18 glass, copper plate assembly is monitored by thermoelectric modules.

FIG. 6
FIG. 6

Ion, electron, and x-ray calorimeters such as this one are positioned around the target. Because the central disk absorbs about 7% of the 1.06 μm light impinging on it, a shielded outer ring is provided which detects scattered radiation only. By subtracting the signal from the outer ring, the energy carried by ions, electrons and soft x rays may be determined.

FIG. 7
FIG. 7

(a) Box calorimeter measurements of absorption by parylene disk targets are compared to the calculated inverse bremsstrahlung absorption, lasnex runs, neglecting the effects of radiation pressure, put k0L in the range 100 to 200 which leads to the estimate for absorption fraction due to inverse bremsstrahlung plotted here. (b) Simple inverse bremsstrahlung model predicts a change in absorption fraction when 〈Z〉 is varied. In fact when the target material was changed, no such change was observed.

FIG. 8
FIG. 8

X-ray spectra from parylene disk targets irradiated by several intensities. Here fν is the derivative of the time integrated x-ray energy detected with respect to = Eν.

FIG. 9
FIG. 9

Suprathermal x-ray tail temperature θh increases with incident intensity and 〈Z〉 of the target.

FIG. 10
FIG. 10

(a) Densitometered x-ray streak records clearly show the compression peak at ∼270 ps. (b) By plotting signal level in each channel, a time resolved measurement of electron temperature in the SiO2 pusher may be obtained.

FIG. 11
FIG. 11

Electron emission spectra from parylene disk targets measured 90° from the incident beam show a strong intensity dependence. ●, 1.8 ± 0.2 × 1015 W/cm2; ○, 2.4 ±0.2 × 1016 W/cm2; ○, 4.5 ± 0.4 × l016 W/cm2; Δ, 2.0 ±0.6 × 1017 W/cm2.

FIG. 12
FIG. 12

(a) Faraday cup ion detectors provide ion energy distribution spectra. (b) Magnetic ion spectrometers measured the high-energy ions from this same shot. Substantial energies are carried by a relatively small fraction of the ions.

FIG. 13
FIG. 13

This calculation by Kruer shows that absorption A depends on angle of incidence and polarization state (Ref. 26). The dots are the calculated absorptions for “P” polarization while the dashed line is the average absorption for random polarization.

FIG. 14
FIG. 14

Polarization-dependent scattering is measured by Si PIN diode arrays in and out of the plane of polarization of the incident laser beam. Similar shots show similar scattered light distributions independent of target material.

FIG. 15
FIG. 15

Si PIN diode detectors located near the angle at which the maximum polarization-dependent scattering had been seen clearly demonstrate its effect.

FIG. 16
FIG. 16

An 80-μm-diam D, T filled microshell target irradiated on both sides with ∼2 × 1015 W/cm2 scattered more laser light out of than in the plane of polarization of the incident beams.

FIG. 17
FIG. 17

Asymmetric heating of 1. 06 fim irradiated D, T filled glass microsphere target. Although the incident laser beam had no polarization-dependent asymmetry, x-ray microscopy of the target shows polarization-dependent heating.

FIG. 18
FIG. 18

Absorption is sensitive to the amount of focal overlap on the target. By translating the foci of the lens, ellipsoidal mirror focusing system on the Janus laser system, the angles of incidence of the rays impinging on the target may be varied. Since absorption is angle dependent as shown in Fig. 13, the computed absorption also changes with focal position. Maximum average neutron yield N ¯ occurs when the foci overlap about 25% of the ball diameter.

FIG. 19
FIG. 19

Evidence of localized heating—x-ray microscopy of the target plasma reveals heated regions surrounded by cooler areas which correlate with hot spots on the incident beam.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

I ABS I INC = [ 1 exp ( C I I N C / I ABS ) ] ,
C 4 × 10 17 ( Z n c 2 ln Λ f k 0 L I INC ω 0 ) .
C 10 11 Z k 0 L / I INC ,
( Δ n n c ) 1 / 2 ( E INC 2 4 π n c θ e ) 1 / 2 = V os V th = 2 ( I INC ( W / cm 2 ) 10 16 θ e ( keV ) ) 1 / 2 at λ = 1.06 μ m
= 2 ( I INC ( W / cm 2 ) 10 14 θ e ( keV ) ) 1 / 2 at λ = 1.06 μ m .