Abstract

Results of an experimental program to investigate the properties of an infrared phase conjugation adapative array are described. Both linear and planar adaptive arrays of up to 7 elements using a new integrated frequency phase control technique at 10.6 μm are discussed. The results presented include correction for atmospheric turbulence at ranges of 1, 6, and 9.5 km. Beam broadening induced by turbulence is reduced to the array diffraction limit and target irradiance fluctuations are decreased by a factor of ≈ 20 in strong turbulence. Received irradiance fluctuations are reduced by ≈ 50 db out to 2 kHz. Beam pointing, scanning, and automatic target acquistion and tracking are demonstrated over the 1 mrad array field of view.

© 1977 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. A. Sichelstiel, W. M. Waters, and T. A. Wild, “Self-Focusing Array Research Model,” IEEE Trans. on Antennas and Propagation AP-12, 150 (1964).
    [Crossref]
  2. M. I. Skolnick and D. D. King, “Self-Phasing Array Antennas,” IEEE Trans. on Antennas and Propagation AP-12, 142 (1964).
    [Crossref]
  3. R. C. Hansen, “Special Issue on Active and Adaptive Antennas,” IEEE Trans. on Antennas and Propagation AP-12, 140 (1964).
    [Crossref]
  4. W. T. Cathey, “Holographic Simulation of Compensation for Atmospheric Wavefront Distortion,” Proc. IEEE 56, 360 (1968).
    [Crossref]
  5. M. J. Lavan, W. K. Cadwallender, and T. F. DeYoung, “A Visible Wavelength COAT Array,” Optical Engineering 15, 1, 56 (1976).
    [Crossref]
  6. W. T. Cathey, C. L. Hayes, W. C. Davis, and V. F. Pizzurro, “Compensation for Atmospheric Phase Effects at 10.6 Micron,” Appl. Opt. 9, 701 (1970).
    [Crossref] [PubMed]
  7. W. B. Bridges, P. T. Brunner, S. P. Lazzara, T. A. Nussmeier, T. R. O’Meara, J. A. Sanquinet, and W. P. Brown, “Coherent Optical Adaptive Techniques,” Appl. Opt. 13, 291 (1974).
    [Crossref] [PubMed]
  8. W. B. Bridges and J. E. Pearson, “Thermal Blooming Compensation Using Coherent Optical Adaptive Techniques (COAT),” Appl. Phys. Lett. 26, 539 (1975).
    [Crossref]
  9. J. E. Pearson, W. B. Bridges, S. Hansen, T. A. Nussmeier, and M. E. Pedinoff, “Coherent Optical Adaptive Techniques: Design and Performance of an 18-Element Visible Multidither COAT System,” Appl. Opt. 15, 3, 611 (1976).
    [Crossref]
  10. J. E. Pearson, “Atmospheric Turbulence Compensation Using Coherent Optical Adaptive Techniques,” Appl. Opt. 15, 3, 622 (1976).
    [Crossref]
  11. W. C. Davis and W. T. Cathey, “Beam Splitters for CO2 Lasers,” Appl. Opt. 8, 715 (1969).
    [Crossref] [PubMed]
  12. J. SooHoo, C. L. Hayes, and R. A. Brandewie, “An Acousto-Optical Modulator for CO2 Lasers,” in Proceedings of the Technical Program, Electro-Optical Systems Design Conference-1972 (Industrial and Scientific Conference Management, Chicago, 1972), p. 164.
  13. A. M. Andrews, J. A. Higgins, J. T. Longo, E. R. Gertner, and J. G. Pasko, “High Speed Pb1−x Snx Te Photodiodes,” Appl. Phys. Lett. 21, 6, 285 (1972).
    [Crossref]
  14. H. T. Yura, “Short-Term Average Optical-Beam Spread in a Turbulent Medium,” J. Opt. Soc. Am. 63, 567 (1973).
    [Crossref]
  15. W. M. Waters, “Adaptive Radar Beacon Forming,” IEEE Trans. Aerospace and Electronic Systems,  AES-6, 4, 503 (1970).
    [Crossref]

1976 (3)

M. J. Lavan, W. K. Cadwallender, and T. F. DeYoung, “A Visible Wavelength COAT Array,” Optical Engineering 15, 1, 56 (1976).
[Crossref]

J. E. Pearson, W. B. Bridges, S. Hansen, T. A. Nussmeier, and M. E. Pedinoff, “Coherent Optical Adaptive Techniques: Design and Performance of an 18-Element Visible Multidither COAT System,” Appl. Opt. 15, 3, 611 (1976).
[Crossref]

J. E. Pearson, “Atmospheric Turbulence Compensation Using Coherent Optical Adaptive Techniques,” Appl. Opt. 15, 3, 622 (1976).
[Crossref]

1975 (1)

W. B. Bridges and J. E. Pearson, “Thermal Blooming Compensation Using Coherent Optical Adaptive Techniques (COAT),” Appl. Phys. Lett. 26, 539 (1975).
[Crossref]

1974 (1)

1973 (1)

1972 (1)

A. M. Andrews, J. A. Higgins, J. T. Longo, E. R. Gertner, and J. G. Pasko, “High Speed Pb1−x Snx Te Photodiodes,” Appl. Phys. Lett. 21, 6, 285 (1972).
[Crossref]

1970 (2)

W. M. Waters, “Adaptive Radar Beacon Forming,” IEEE Trans. Aerospace and Electronic Systems,  AES-6, 4, 503 (1970).
[Crossref]

W. T. Cathey, C. L. Hayes, W. C. Davis, and V. F. Pizzurro, “Compensation for Atmospheric Phase Effects at 10.6 Micron,” Appl. Opt. 9, 701 (1970).
[Crossref] [PubMed]

1969 (1)

1968 (1)

W. T. Cathey, “Holographic Simulation of Compensation for Atmospheric Wavefront Distortion,” Proc. IEEE 56, 360 (1968).
[Crossref]

1964 (3)

B. A. Sichelstiel, W. M. Waters, and T. A. Wild, “Self-Focusing Array Research Model,” IEEE Trans. on Antennas and Propagation AP-12, 150 (1964).
[Crossref]

M. I. Skolnick and D. D. King, “Self-Phasing Array Antennas,” IEEE Trans. on Antennas and Propagation AP-12, 142 (1964).
[Crossref]

R. C. Hansen, “Special Issue on Active and Adaptive Antennas,” IEEE Trans. on Antennas and Propagation AP-12, 140 (1964).
[Crossref]

Andrews, A. M.

A. M. Andrews, J. A. Higgins, J. T. Longo, E. R. Gertner, and J. G. Pasko, “High Speed Pb1−x Snx Te Photodiodes,” Appl. Phys. Lett. 21, 6, 285 (1972).
[Crossref]

Brandewie, R. A.

J. SooHoo, C. L. Hayes, and R. A. Brandewie, “An Acousto-Optical Modulator for CO2 Lasers,” in Proceedings of the Technical Program, Electro-Optical Systems Design Conference-1972 (Industrial and Scientific Conference Management, Chicago, 1972), p. 164.

Bridges, W. B.

J. E. Pearson, W. B. Bridges, S. Hansen, T. A. Nussmeier, and M. E. Pedinoff, “Coherent Optical Adaptive Techniques: Design and Performance of an 18-Element Visible Multidither COAT System,” Appl. Opt. 15, 3, 611 (1976).
[Crossref]

W. B. Bridges and J. E. Pearson, “Thermal Blooming Compensation Using Coherent Optical Adaptive Techniques (COAT),” Appl. Phys. Lett. 26, 539 (1975).
[Crossref]

W. B. Bridges, P. T. Brunner, S. P. Lazzara, T. A. Nussmeier, T. R. O’Meara, J. A. Sanquinet, and W. P. Brown, “Coherent Optical Adaptive Techniques,” Appl. Opt. 13, 291 (1974).
[Crossref] [PubMed]

Brown, W. P.

Brunner, P. T.

Cadwallender, W. K.

M. J. Lavan, W. K. Cadwallender, and T. F. DeYoung, “A Visible Wavelength COAT Array,” Optical Engineering 15, 1, 56 (1976).
[Crossref]

Cathey, W. T.

Davis, W. C.

DeYoung, T. F.

M. J. Lavan, W. K. Cadwallender, and T. F. DeYoung, “A Visible Wavelength COAT Array,” Optical Engineering 15, 1, 56 (1976).
[Crossref]

Gertner, E. R.

A. M. Andrews, J. A. Higgins, J. T. Longo, E. R. Gertner, and J. G. Pasko, “High Speed Pb1−x Snx Te Photodiodes,” Appl. Phys. Lett. 21, 6, 285 (1972).
[Crossref]

Hansen, R. C.

R. C. Hansen, “Special Issue on Active and Adaptive Antennas,” IEEE Trans. on Antennas and Propagation AP-12, 140 (1964).
[Crossref]

Hansen, S.

J. E. Pearson, W. B. Bridges, S. Hansen, T. A. Nussmeier, and M. E. Pedinoff, “Coherent Optical Adaptive Techniques: Design and Performance of an 18-Element Visible Multidither COAT System,” Appl. Opt. 15, 3, 611 (1976).
[Crossref]

Hayes, C. L.

W. T. Cathey, C. L. Hayes, W. C. Davis, and V. F. Pizzurro, “Compensation for Atmospheric Phase Effects at 10.6 Micron,” Appl. Opt. 9, 701 (1970).
[Crossref] [PubMed]

J. SooHoo, C. L. Hayes, and R. A. Brandewie, “An Acousto-Optical Modulator for CO2 Lasers,” in Proceedings of the Technical Program, Electro-Optical Systems Design Conference-1972 (Industrial and Scientific Conference Management, Chicago, 1972), p. 164.

Higgins, J. A.

A. M. Andrews, J. A. Higgins, J. T. Longo, E. R. Gertner, and J. G. Pasko, “High Speed Pb1−x Snx Te Photodiodes,” Appl. Phys. Lett. 21, 6, 285 (1972).
[Crossref]

King, D. D.

M. I. Skolnick and D. D. King, “Self-Phasing Array Antennas,” IEEE Trans. on Antennas and Propagation AP-12, 142 (1964).
[Crossref]

Lavan, M. J.

M. J. Lavan, W. K. Cadwallender, and T. F. DeYoung, “A Visible Wavelength COAT Array,” Optical Engineering 15, 1, 56 (1976).
[Crossref]

Lazzara, S. P.

Longo, J. T.

A. M. Andrews, J. A. Higgins, J. T. Longo, E. R. Gertner, and J. G. Pasko, “High Speed Pb1−x Snx Te Photodiodes,” Appl. Phys. Lett. 21, 6, 285 (1972).
[Crossref]

Nussmeier, T. A.

J. E. Pearson, W. B. Bridges, S. Hansen, T. A. Nussmeier, and M. E. Pedinoff, “Coherent Optical Adaptive Techniques: Design and Performance of an 18-Element Visible Multidither COAT System,” Appl. Opt. 15, 3, 611 (1976).
[Crossref]

W. B. Bridges, P. T. Brunner, S. P. Lazzara, T. A. Nussmeier, T. R. O’Meara, J. A. Sanquinet, and W. P. Brown, “Coherent Optical Adaptive Techniques,” Appl. Opt. 13, 291 (1974).
[Crossref] [PubMed]

O’Meara, T. R.

Pasko, J. G.

A. M. Andrews, J. A. Higgins, J. T. Longo, E. R. Gertner, and J. G. Pasko, “High Speed Pb1−x Snx Te Photodiodes,” Appl. Phys. Lett. 21, 6, 285 (1972).
[Crossref]

Pearson, J. E.

J. E. Pearson, “Atmospheric Turbulence Compensation Using Coherent Optical Adaptive Techniques,” Appl. Opt. 15, 3, 622 (1976).
[Crossref]

J. E. Pearson, W. B. Bridges, S. Hansen, T. A. Nussmeier, and M. E. Pedinoff, “Coherent Optical Adaptive Techniques: Design and Performance of an 18-Element Visible Multidither COAT System,” Appl. Opt. 15, 3, 611 (1976).
[Crossref]

W. B. Bridges and J. E. Pearson, “Thermal Blooming Compensation Using Coherent Optical Adaptive Techniques (COAT),” Appl. Phys. Lett. 26, 539 (1975).
[Crossref]

Pedinoff, M. E.

J. E. Pearson, W. B. Bridges, S. Hansen, T. A. Nussmeier, and M. E. Pedinoff, “Coherent Optical Adaptive Techniques: Design and Performance of an 18-Element Visible Multidither COAT System,” Appl. Opt. 15, 3, 611 (1976).
[Crossref]

Pizzurro, V. F.

Sanquinet, J. A.

Sichelstiel, B. A.

B. A. Sichelstiel, W. M. Waters, and T. A. Wild, “Self-Focusing Array Research Model,” IEEE Trans. on Antennas and Propagation AP-12, 150 (1964).
[Crossref]

Skolnick, M. I.

M. I. Skolnick and D. D. King, “Self-Phasing Array Antennas,” IEEE Trans. on Antennas and Propagation AP-12, 142 (1964).
[Crossref]

SooHoo, J.

J. SooHoo, C. L. Hayes, and R. A. Brandewie, “An Acousto-Optical Modulator for CO2 Lasers,” in Proceedings of the Technical Program, Electro-Optical Systems Design Conference-1972 (Industrial and Scientific Conference Management, Chicago, 1972), p. 164.

Waters, W. M.

W. M. Waters, “Adaptive Radar Beacon Forming,” IEEE Trans. Aerospace and Electronic Systems,  AES-6, 4, 503 (1970).
[Crossref]

B. A. Sichelstiel, W. M. Waters, and T. A. Wild, “Self-Focusing Array Research Model,” IEEE Trans. on Antennas and Propagation AP-12, 150 (1964).
[Crossref]

Wild, T. A.

B. A. Sichelstiel, W. M. Waters, and T. A. Wild, “Self-Focusing Array Research Model,” IEEE Trans. on Antennas and Propagation AP-12, 150 (1964).
[Crossref]

Yura, H. T.

Appl. Opt. (5)

J. E. Pearson, W. B. Bridges, S. Hansen, T. A. Nussmeier, and M. E. Pedinoff, “Coherent Optical Adaptive Techniques: Design and Performance of an 18-Element Visible Multidither COAT System,” Appl. Opt. 15, 3, 611 (1976).
[Crossref]

J. E. Pearson, “Atmospheric Turbulence Compensation Using Coherent Optical Adaptive Techniques,” Appl. Opt. 15, 3, 622 (1976).
[Crossref]

W. T. Cathey, C. L. Hayes, W. C. Davis, and V. F. Pizzurro, “Compensation for Atmospheric Phase Effects at 10.6 Micron,” Appl. Opt. 9, 701 (1970).
[Crossref] [PubMed]

W. B. Bridges, P. T. Brunner, S. P. Lazzara, T. A. Nussmeier, T. R. O’Meara, J. A. Sanquinet, and W. P. Brown, “Coherent Optical Adaptive Techniques,” Appl. Opt. 13, 291 (1974).
[Crossref] [PubMed]

W. C. Davis and W. T. Cathey, “Beam Splitters for CO2 Lasers,” Appl. Opt. 8, 715 (1969).
[Crossref] [PubMed]

Appl. Phys. Lett. (2)

A. M. Andrews, J. A. Higgins, J. T. Longo, E. R. Gertner, and J. G. Pasko, “High Speed Pb1−x Snx Te Photodiodes,” Appl. Phys. Lett. 21, 6, 285 (1972).
[Crossref]

W. B. Bridges and J. E. Pearson, “Thermal Blooming Compensation Using Coherent Optical Adaptive Techniques (COAT),” Appl. Phys. Lett. 26, 539 (1975).
[Crossref]

IEEE Trans. Aerospace and Electronic Systems (1)

W. M. Waters, “Adaptive Radar Beacon Forming,” IEEE Trans. Aerospace and Electronic Systems,  AES-6, 4, 503 (1970).
[Crossref]

IEEE Trans. on Antennas and Propagation (3)

B. A. Sichelstiel, W. M. Waters, and T. A. Wild, “Self-Focusing Array Research Model,” IEEE Trans. on Antennas and Propagation AP-12, 150 (1964).
[Crossref]

M. I. Skolnick and D. D. King, “Self-Phasing Array Antennas,” IEEE Trans. on Antennas and Propagation AP-12, 142 (1964).
[Crossref]

R. C. Hansen, “Special Issue on Active and Adaptive Antennas,” IEEE Trans. on Antennas and Propagation AP-12, 140 (1964).
[Crossref]

J. Opt. Soc. Am. (1)

Optical Engineering (1)

M. J. Lavan, W. K. Cadwallender, and T. F. DeYoung, “A Visible Wavelength COAT Array,” Optical Engineering 15, 1, 56 (1976).
[Crossref]

Proc. IEEE (1)

W. T. Cathey, “Holographic Simulation of Compensation for Atmospheric Wavefront Distortion,” Proc. IEEE 56, 360 (1968).
[Crossref]

Other (1)

J. SooHoo, C. L. Hayes, and R. A. Brandewie, “An Acousto-Optical Modulator for CO2 Lasers,” in Proceedings of the Technical Program, Electro-Optical Systems Design Conference-1972 (Industrial and Scientific Conference Management, Chicago, 1972), p. 164.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (16)

FIG. 1
FIG. 1

Illustration of the operation of a phase conjugation adaptive array.

FIG. 2
FIG. 2

Optical configuration for the 7-element planar array adaptive system. The linear array configurations are similar, differing only in the arrangement of the beam combining mirrors and the maximum number of elements (6). Circles indicate vacuum Dewars for the 77 °K detectors.

FIG. 3
FIG. 3

Control electronics configuration for two channels of the phase conjugation adaptive array. “A” and “U” refer to adapted and unadapted operation, respectively. All other channels are similar to channel 2, with a VCO.

FIG. 4
FIG. 4

Intensity distributions for the 6-element linear array at 1 km range, single glint target. (a) Adapted intensity distribution, single recorder trace. (b) Intensity distribution for the unadapted mode during a recording period of 6 min. Channel phases set by the adapted mode. (c) Intensity distribution with channel phase altered to illustrate beam deterioration.

FIG. 5
FIG. 5

Intensity distribution for the 6-element linear array at 6 km range, single glint target. (a) Intensity distribution for the unadapted mode, slow scan. Channel phases set by the adapted mode. Shift of the central lobe to the left in this scan is an instrumental phase error, not an atmospheric effect. (b) Adapted intensity distribution, single recorder trace, slow scan.

FIG. 6
FIG. 6

Measured corrected central lobe null-to-null width Wm, normalized to 2λ/D, vs range. Solid curve gives the theoretically predicted value for perfect correction. Single glint target.

FIG. 7
FIG. 7

Adaptive response speed measurements at 1 km range, single glint target. Time scale is 50 μs/major division. (a) Response speed measured at one receiver channel, 3-element linear array. Carrier is the 4.5 mHz i. f. frequency. Lower trace is the execute command pulse. (b) Response speed measured in the target plane at 1 km, 6-element linear array. Closure signal begins at t = 0.

FIG. 8
FIG. 8

Frequency spectrum of the 4.5 MHz received signal on one adaptive channel. Range: 1 km, 6-element linear array, single glint target. Vertical scale: 10dB/major division. Horizontal scale: 2 kHz/major division. (a) Unadapted spectrum. (b) Adapted spectrum.

FIG. 9
FIG. 9

Measured adapted relative central lobe peak intensity as a function of the number of linear array elements operating. Measured points agree well with the expected n2 dependence. Range is 1 km, single glint target.

FIG. 10
FIG. 10

Results of glint capture experiments for 3- and 6-element linear array at 1 km range. The numbers designate the relative glint reflectivity. Glint position is given by the diamonds. Darkened diamonds designate the converged position of the central lobe of the array pattern.

FIG. 11
FIG. 11

Illustrating manual offset of the beam in the adapted mode. Parameter is the phase step between adjacent elements, Range is 1 km, 6-element linear array, single glint target.

FIG. 12
FIG. 12

Results of system in time-shared operation (TSO) at 1 km range for 0.2π rad/element of phase shift during offset operation, single glint target. (a) Intensity on target as a function of time. (b) Intensity on glint as a function of time. These data were taken sequentially, not simultaneously. Therefore, there is no precise correlation between the time scales in the two parts of this figure.

FIG. 13
FIG. 13

Time dependence of the central intensity at 1 km range with the array scanning linearly at approximately 0.5 Hz rate. Phase offset: ± 0.2π rad/element. Recording speed 2.5 cm/s. Full scan angle is approximately 0.2 beamwidth.

FIG. 14
FIG. 14

Intensity distribution at 1 km range for the 7-element planar array in the adapted mode. For this measurement the single glint is located about 3 cm below the scanning plane at 75 cm displacement. The signal dropout near the target position is a result of field blockage by part of the mechanical assembly holding the target.

FIG. 15
FIG. 15

Adaptive compensation of scintillation. Intensity as a function of time at field center for the 7-element planar array at 1 km range for both adapted and unadapted operation. σI is the rms of the intensity fluctuations and s is the time-averaged intensity. Single glint target.

FIG. 16
FIG. 16

Target plane intensity at 1 km range for the 7-element planar array with the system locked to a moving target. The single glint and field detector are moving horizontally across the field together.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

ϕ ( t ) = ϕ 0 + 2 π 0 t Δ f ( t ) d t ,
W 1 / 2 = λ r D ( 1 + ( 1.44 / D ) 2 ( k 2 r C N 2 ) - 6 / 5 ( 1.44 / D ) 2 ( k 2 r C N 2 ) - 6 / 5 ) 1 / 2 = 15.9 cm ,