Abstract

A variable-frequency, spinning reticle photometer has been used to measure the spatial-frequency modulation of stellar images in the Cassegrain focal plane of a 1.22 m telescope at the AMOS observatory atop Haleakala on the island Maui, Hawaii. This data, processed in real time, provides information on the statistical properties of the image size which, in turn, yields an estimate of the atmospheric correlation scale r0. Data was collected on 24 nights over a period of eight months. Values of r0 ranged from 5.3 to 17.8 cm with a mean value of 9.6 cm at 5000 Å. A variety of temporal behavior was also observed.

© 1977 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. E. Hufnagel and N. R. Stanley, “Modulation transfer function associated with image transmission through turbulent media, ” J. Opt. Soc. Am. 54, 52–61 (1964).
    [CrossRef]
  2. D. L. Fried, “Optical Resolution through a randomly inhomogeneous medium for very long and very short exposures, ” J. Opt. Soc. Am. 56, 1372–1379 (1966).
    [CrossRef]
  3. D. Korff, “Analysis of a method for obtaining near-diffraction-limited information in the presence of atmospheric turbulence,” J. Opt. Soc. Am. 63, 971–980 (1973).
    [CrossRef]
  4. See, for example, R. A. Muller and A. Buffington, “Realtime correction of atmospherically degraded telescope images through image sharpening, ” J. Opt. Soc. Am. 64, 1200–1210 (1974).
    [CrossRef]
  5. C. R. Giuliano, J. A. Jenney, L. Miller, M. E. Pedinoff, D. Y. Tseng, and S. M. Wandzura, “Space Object Imaging,” Technical Report No. RADC-TR-76-54 (Rome Air Development Center, Griffiss AFB, New York, 1976), p. 21.
  6. M. Miller, P. Zieske, and D. Hanson, “Characterization of Atmospheric Turbulence,” Proc. Soc. Photo-Opt. Instrum. Eng. 75, 30 (1976).
  7. D. P. Karo and A. M. Schneiderman, “Speckle interferometry lens–atmosphere MTF measurements, ” J. Opt. Soc. Am. 66, 1252 (1976),and private communication.
    [CrossRef]
  8. A. Papoulis, Probability, Random Variables and Stochastic Processes (McGraw-Hill, New York, 1965), p. 245.
  9. M. G. Miller and P. L. Zieske, “Turbulence Characterization and Control,” Technical Report No. RADC-TR-77-70 (Rome Air Development Center, Griffiss AFB, New York, 1977), p. 18.
  10. The data taken during the period 11 November 1975 to 8 December 1975 have been reported previously (Ref. 6). They are included here in order to provide a better estimate of the long-term statistics.
  11. M. G. Miller and P. Kellen, “Astronomical Differential Angle of Arrival Measurements,” Proceedings of the AAS/ SAO/OSA/ SPIE Topical Meeting on Imaging in Astronomy, Cambridge, Mass., 1975, Paper WB-3.
  12. D. Kelsall, “Optical seeing through the atmosphere by an interferometric technique,” J. Opt. Soc. Am. 63, 1472 (1973).
    [CrossRef]
  13. J. C. Dainty and R. J. Scadden, “Measurements of the Atmospheric Transfer Function at Mauna Kea, Hawaii,” Mon. Not. R. Astr. Soc. 170, 519 (1975).
  14. D. L. Fried and G. E. Mevers, “Evaluation of r0 for Propagation Down through the Atmosphere, ” Appl. Opt. 13, 2620 (1974).Several numerical corrections to these results are given by D. L. Fried, Appl. Opt. 14, 2567 (1975);ibid. 16, 549 (1977).
    [CrossRef] [PubMed]
  15. D. Korff, G. Dryden, and M. G. Miller, “Information Retrieval from Atmospheric Induced Speckle Patterns, ” Opt. Commun. 5, 187 (1972).
    [CrossRef]
  16. D. Karo and A. Schneiderman, “Nonstationarity of the atmospheric transfer function,” J. Opt. Soc. Am. 66, 1065A (1976).

1976 (3)

M. Miller, P. Zieske, and D. Hanson, “Characterization of Atmospheric Turbulence,” Proc. Soc. Photo-Opt. Instrum. Eng. 75, 30 (1976).

D. P. Karo and A. M. Schneiderman, “Speckle interferometry lens–atmosphere MTF measurements, ” J. Opt. Soc. Am. 66, 1252 (1976),and private communication.
[CrossRef]

D. Karo and A. Schneiderman, “Nonstationarity of the atmospheric transfer function,” J. Opt. Soc. Am. 66, 1065A (1976).

1975 (1)

J. C. Dainty and R. J. Scadden, “Measurements of the Atmospheric Transfer Function at Mauna Kea, Hawaii,” Mon. Not. R. Astr. Soc. 170, 519 (1975).

1974 (2)

1973 (2)

1972 (1)

D. Korff, G. Dryden, and M. G. Miller, “Information Retrieval from Atmospheric Induced Speckle Patterns, ” Opt. Commun. 5, 187 (1972).
[CrossRef]

1966 (1)

1964 (1)

Buffington, A.

Dainty, J. C.

J. C. Dainty and R. J. Scadden, “Measurements of the Atmospheric Transfer Function at Mauna Kea, Hawaii,” Mon. Not. R. Astr. Soc. 170, 519 (1975).

Dryden, G.

D. Korff, G. Dryden, and M. G. Miller, “Information Retrieval from Atmospheric Induced Speckle Patterns, ” Opt. Commun. 5, 187 (1972).
[CrossRef]

Fried, D. L.

Giuliano, C. R.

C. R. Giuliano, J. A. Jenney, L. Miller, M. E. Pedinoff, D. Y. Tseng, and S. M. Wandzura, “Space Object Imaging,” Technical Report No. RADC-TR-76-54 (Rome Air Development Center, Griffiss AFB, New York, 1976), p. 21.

Hanson, D.

M. Miller, P. Zieske, and D. Hanson, “Characterization of Atmospheric Turbulence,” Proc. Soc. Photo-Opt. Instrum. Eng. 75, 30 (1976).

Hufnagel, R. E.

Jenney, J. A.

C. R. Giuliano, J. A. Jenney, L. Miller, M. E. Pedinoff, D. Y. Tseng, and S. M. Wandzura, “Space Object Imaging,” Technical Report No. RADC-TR-76-54 (Rome Air Development Center, Griffiss AFB, New York, 1976), p. 21.

Karo, D.

D. Karo and A. Schneiderman, “Nonstationarity of the atmospheric transfer function,” J. Opt. Soc. Am. 66, 1065A (1976).

Karo, D. P.

Kellen, P.

M. G. Miller and P. Kellen, “Astronomical Differential Angle of Arrival Measurements,” Proceedings of the AAS/ SAO/OSA/ SPIE Topical Meeting on Imaging in Astronomy, Cambridge, Mass., 1975, Paper WB-3.

Kelsall, D.

Korff, D.

D. Korff, “Analysis of a method for obtaining near-diffraction-limited information in the presence of atmospheric turbulence,” J. Opt. Soc. Am. 63, 971–980 (1973).
[CrossRef]

D. Korff, G. Dryden, and M. G. Miller, “Information Retrieval from Atmospheric Induced Speckle Patterns, ” Opt. Commun. 5, 187 (1972).
[CrossRef]

Mevers, G. E.

Miller, L.

C. R. Giuliano, J. A. Jenney, L. Miller, M. E. Pedinoff, D. Y. Tseng, and S. M. Wandzura, “Space Object Imaging,” Technical Report No. RADC-TR-76-54 (Rome Air Development Center, Griffiss AFB, New York, 1976), p. 21.

Miller, M.

M. Miller, P. Zieske, and D. Hanson, “Characterization of Atmospheric Turbulence,” Proc. Soc. Photo-Opt. Instrum. Eng. 75, 30 (1976).

Miller, M. G.

D. Korff, G. Dryden, and M. G. Miller, “Information Retrieval from Atmospheric Induced Speckle Patterns, ” Opt. Commun. 5, 187 (1972).
[CrossRef]

M. G. Miller and P. L. Zieske, “Turbulence Characterization and Control,” Technical Report No. RADC-TR-77-70 (Rome Air Development Center, Griffiss AFB, New York, 1977), p. 18.

M. G. Miller and P. Kellen, “Astronomical Differential Angle of Arrival Measurements,” Proceedings of the AAS/ SAO/OSA/ SPIE Topical Meeting on Imaging in Astronomy, Cambridge, Mass., 1975, Paper WB-3.

Muller, R. A.

Papoulis, A.

A. Papoulis, Probability, Random Variables and Stochastic Processes (McGraw-Hill, New York, 1965), p. 245.

Pedinoff, M. E.

C. R. Giuliano, J. A. Jenney, L. Miller, M. E. Pedinoff, D. Y. Tseng, and S. M. Wandzura, “Space Object Imaging,” Technical Report No. RADC-TR-76-54 (Rome Air Development Center, Griffiss AFB, New York, 1976), p. 21.

Scadden, R. J.

J. C. Dainty and R. J. Scadden, “Measurements of the Atmospheric Transfer Function at Mauna Kea, Hawaii,” Mon. Not. R. Astr. Soc. 170, 519 (1975).

Schneiderman, A.

D. Karo and A. Schneiderman, “Nonstationarity of the atmospheric transfer function,” J. Opt. Soc. Am. 66, 1065A (1976).

Schneiderman, A. M.

Stanley, N. R.

Tseng, D. Y.

C. R. Giuliano, J. A. Jenney, L. Miller, M. E. Pedinoff, D. Y. Tseng, and S. M. Wandzura, “Space Object Imaging,” Technical Report No. RADC-TR-76-54 (Rome Air Development Center, Griffiss AFB, New York, 1976), p. 21.

Wandzura, S. M.

C. R. Giuliano, J. A. Jenney, L. Miller, M. E. Pedinoff, D. Y. Tseng, and S. M. Wandzura, “Space Object Imaging,” Technical Report No. RADC-TR-76-54 (Rome Air Development Center, Griffiss AFB, New York, 1976), p. 21.

Zieske, P.

M. Miller, P. Zieske, and D. Hanson, “Characterization of Atmospheric Turbulence,” Proc. Soc. Photo-Opt. Instrum. Eng. 75, 30 (1976).

Zieske, P. L.

M. G. Miller and P. L. Zieske, “Turbulence Characterization and Control,” Technical Report No. RADC-TR-77-70 (Rome Air Development Center, Griffiss AFB, New York, 1977), p. 18.

Appl. Opt. (1)

J. Opt. Soc. Am. (7)

Mon. Not. R. Astr. Soc. (1)

J. C. Dainty and R. J. Scadden, “Measurements of the Atmospheric Transfer Function at Mauna Kea, Hawaii,” Mon. Not. R. Astr. Soc. 170, 519 (1975).

Opt. Commun. (1)

D. Korff, G. Dryden, and M. G. Miller, “Information Retrieval from Atmospheric Induced Speckle Patterns, ” Opt. Commun. 5, 187 (1972).
[CrossRef]

Proc. Soc. Photo-Opt. Instrum. Eng. (1)

M. Miller, P. Zieske, and D. Hanson, “Characterization of Atmospheric Turbulence,” Proc. Soc. Photo-Opt. Instrum. Eng. 75, 30 (1976).

Other (5)

A. Papoulis, Probability, Random Variables and Stochastic Processes (McGraw-Hill, New York, 1965), p. 245.

M. G. Miller and P. L. Zieske, “Turbulence Characterization and Control,” Technical Report No. RADC-TR-77-70 (Rome Air Development Center, Griffiss AFB, New York, 1977), p. 18.

The data taken during the period 11 November 1975 to 8 December 1975 have been reported previously (Ref. 6). They are included here in order to provide a better estimate of the long-term statistics.

M. G. Miller and P. Kellen, “Astronomical Differential Angle of Arrival Measurements,” Proceedings of the AAS/ SAO/OSA/ SPIE Topical Meeting on Imaging in Astronomy, Cambridge, Mass., 1975, Paper WB-3.

C. R. Giuliano, J. A. Jenney, L. Miller, M. E. Pedinoff, D. Y. Tseng, and S. M. Wandzura, “Space Object Imaging,” Technical Report No. RADC-TR-76-54 (Rome Air Development Center, Griffiss AFB, New York, 1976), p. 21.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

FlG. 1
FlG. 1

Experimental system—basis concept. Components shown are the stellar source (S), telescope (T), reticle (R), and photomultiplier (P) with output S(t).

FIG. 2
FIG. 2

Sensor package optical train.

FIG. 3
FIG. 3

Electronic and data processing. Blocks above the dashed line correspond to internal electronics. Those below represent external data processing.

FIG. 4
FIG. 4

Average voltage (a) and voltage variance (b) as a function of stellar magnitude. The smooth curve is a fit to the form A + B exp(0. 92 m) predicted by theory.

FIG. 5
FIG. 5

Variability of the data. The bars indicate the averaging period.

FIG. 6
FIG. 6

Trends in the data. The bars indicate the averaging period.

FIG. 7
FIG. 7

Correlation scale distribution. The straight line is for a Gaussian distribution with the empirical mean and variance.

Tables (2)

Tables Icon

TABLE I System characteristics.

Tables Icon

TABLE II Data summary.