Abstract

A new dry-process recording material using photopolymerization in the crystalline state is proposed as an ideal material for holographic interferometry, especially for real-time holographic interferometry. The performance of the complex recording material comprising m-PDA as a photopolymerizing reactant and picramide as a spectral sensitizer were evaluated. The development of this complex recording material is accomplished simply by heating it; fixation occurs at room temperature. We were able to make a holographic grating with resolution up to 1930 lines per millimeter using this material with a He-Cd laser oscillating at 442 nm. The maximum diffraction efficiency and the sensitivity corresponding to a 30% diffraction efficiency as a volume phase hologram were estimated as 36.3% and 5.6 mJ/cm2, respectively.

© 1977 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. M. Moran and I. P. Kaminow, “Properties of holographic gratings photoinduced in polymethyl methacrylate,” Appl. Opt. 12, 1964–1973 (1973).
    [Crossref] [PubMed]
  2. J. A. Jenny, “Holographic recording with photopolymers,” J. Opt. Soc. Am. 60, 1155–1161 (1970).
    [Crossref]
  3. W. S. Colburn and K. A. Haines, “Volume hologram formation in photopolymer material,” Appl. Opt. 10, 1636–1641 (1971).
    [Crossref] [PubMed]
  4. R. H. Wopschall and T. R. Pampalone, “Dry photopolymer film for recording holograms,” Appl. Opt. 11, 2096–2097 (1972).
    [Crossref] [PubMed]
  5. B. L. Booth, “Photopolymer material for holography,” Appl. Opt. 11, 2994–2995 (1972).
    [Crossref] [PubMed]
  6. S. Sugawara, K. Murase, and T. Kitayama, “Holographic recording by dye-sensitized photopolymerization of acrylamide,” Appl. Opt. 14, 378–382 (1975).
    [Crossref] [PubMed]
  7. B. L. Booth, “Photopolymer material for holography,” Appl. Opt. 14, 593–601 (1975).
    [Crossref] [PubMed]
  8. W. J. Tomlinson, E. A. Chandross, H. P. Weber, and G. D. Aumiller, “Multicomponent photopolymer systems for volume phase holograms and grating devices,” Appl. Opt. 15, 534–541 (1976).
    [Crossref] [PubMed]
  9. M. Hasegawa, Y. Suzuki, and H. Nakanishi, “Four-center type photopolymerization in the crystalline state. 1. Polymerization of 2, 5-distyrylpyrazine and related compounds,” J. Polym. Sci. A-1, 743–752 (1969).
  10. H. Nakanishi, Y. Suzuki, F. Suzuki, and M. Hasegawa, “Four-center type photopolymerization in the solid state. 2. Polymerization mechanism of 2, 5-distyrylpyrazine,” J. Polym. Sci. A-1, 753–766 (1969).
  11. F. Suzuki, Y. Suzuki, H. Nakanishi, and M. Hasegawa, “Four-center type photopolymerization in the solid state. 3. Polymerization of phenylene diacrylic acid and its derivatives,” J. Polym. Sci. A-1, 2319–2331 (1969).
  12. F. Nakanishi, H. Nakanishi, and M. Hasegawa, “Four-center type photopolymerization in the solid state. 7. Photochemical reaction of m-phenelene diacrylic acid dimethyl ester,” J. Polym. Sci. Polym. Chemi. Edi. 13, 2499–2506 (1975).
    [Crossref]
  13. E. M. Robertson, W. P. Van Deusen, and L. M. Minsk, “Photosensitive polymers. 2. Sensitization of poly(vinyl cinnamate),” J. Appl. Polym. Sci. 2, 308–311 (1959).
    [Crossref]

1976 (1)

1975 (3)

S. Sugawara, K. Murase, and T. Kitayama, “Holographic recording by dye-sensitized photopolymerization of acrylamide,” Appl. Opt. 14, 378–382 (1975).
[Crossref] [PubMed]

B. L. Booth, “Photopolymer material for holography,” Appl. Opt. 14, 593–601 (1975).
[Crossref] [PubMed]

F. Nakanishi, H. Nakanishi, and M. Hasegawa, “Four-center type photopolymerization in the solid state. 7. Photochemical reaction of m-phenelene diacrylic acid dimethyl ester,” J. Polym. Sci. Polym. Chemi. Edi. 13, 2499–2506 (1975).
[Crossref]

1973 (1)

1972 (2)

1971 (1)

1970 (1)

1969 (3)

M. Hasegawa, Y. Suzuki, and H. Nakanishi, “Four-center type photopolymerization in the crystalline state. 1. Polymerization of 2, 5-distyrylpyrazine and related compounds,” J. Polym. Sci. A-1, 743–752 (1969).

H. Nakanishi, Y. Suzuki, F. Suzuki, and M. Hasegawa, “Four-center type photopolymerization in the solid state. 2. Polymerization mechanism of 2, 5-distyrylpyrazine,” J. Polym. Sci. A-1, 753–766 (1969).

F. Suzuki, Y. Suzuki, H. Nakanishi, and M. Hasegawa, “Four-center type photopolymerization in the solid state. 3. Polymerization of phenylene diacrylic acid and its derivatives,” J. Polym. Sci. A-1, 2319–2331 (1969).

1959 (1)

E. M. Robertson, W. P. Van Deusen, and L. M. Minsk, “Photosensitive polymers. 2. Sensitization of poly(vinyl cinnamate),” J. Appl. Polym. Sci. 2, 308–311 (1959).
[Crossref]

Aumiller, G. D.

Booth, B. L.

Chandross, E. A.

Colburn, W. S.

Haines, K. A.

Hasegawa, M.

F. Nakanishi, H. Nakanishi, and M. Hasegawa, “Four-center type photopolymerization in the solid state. 7. Photochemical reaction of m-phenelene diacrylic acid dimethyl ester,” J. Polym. Sci. Polym. Chemi. Edi. 13, 2499–2506 (1975).
[Crossref]

F. Suzuki, Y. Suzuki, H. Nakanishi, and M. Hasegawa, “Four-center type photopolymerization in the solid state. 3. Polymerization of phenylene diacrylic acid and its derivatives,” J. Polym. Sci. A-1, 2319–2331 (1969).

M. Hasegawa, Y. Suzuki, and H. Nakanishi, “Four-center type photopolymerization in the crystalline state. 1. Polymerization of 2, 5-distyrylpyrazine and related compounds,” J. Polym. Sci. A-1, 743–752 (1969).

H. Nakanishi, Y. Suzuki, F. Suzuki, and M. Hasegawa, “Four-center type photopolymerization in the solid state. 2. Polymerization mechanism of 2, 5-distyrylpyrazine,” J. Polym. Sci. A-1, 753–766 (1969).

Jenny, J. A.

Kaminow, I. P.

Kitayama, T.

Minsk, L. M.

E. M. Robertson, W. P. Van Deusen, and L. M. Minsk, “Photosensitive polymers. 2. Sensitization of poly(vinyl cinnamate),” J. Appl. Polym. Sci. 2, 308–311 (1959).
[Crossref]

Moran, J. M.

Murase, K.

Nakanishi, F.

F. Nakanishi, H. Nakanishi, and M. Hasegawa, “Four-center type photopolymerization in the solid state. 7. Photochemical reaction of m-phenelene diacrylic acid dimethyl ester,” J. Polym. Sci. Polym. Chemi. Edi. 13, 2499–2506 (1975).
[Crossref]

Nakanishi, H.

F. Nakanishi, H. Nakanishi, and M. Hasegawa, “Four-center type photopolymerization in the solid state. 7. Photochemical reaction of m-phenelene diacrylic acid dimethyl ester,” J. Polym. Sci. Polym. Chemi. Edi. 13, 2499–2506 (1975).
[Crossref]

F. Suzuki, Y. Suzuki, H. Nakanishi, and M. Hasegawa, “Four-center type photopolymerization in the solid state. 3. Polymerization of phenylene diacrylic acid and its derivatives,” J. Polym. Sci. A-1, 2319–2331 (1969).

M. Hasegawa, Y. Suzuki, and H. Nakanishi, “Four-center type photopolymerization in the crystalline state. 1. Polymerization of 2, 5-distyrylpyrazine and related compounds,” J. Polym. Sci. A-1, 743–752 (1969).

H. Nakanishi, Y. Suzuki, F. Suzuki, and M. Hasegawa, “Four-center type photopolymerization in the solid state. 2. Polymerization mechanism of 2, 5-distyrylpyrazine,” J. Polym. Sci. A-1, 753–766 (1969).

Pampalone, T. R.

Robertson, E. M.

E. M. Robertson, W. P. Van Deusen, and L. M. Minsk, “Photosensitive polymers. 2. Sensitization of poly(vinyl cinnamate),” J. Appl. Polym. Sci. 2, 308–311 (1959).
[Crossref]

Sugawara, S.

Suzuki, F.

H. Nakanishi, Y. Suzuki, F. Suzuki, and M. Hasegawa, “Four-center type photopolymerization in the solid state. 2. Polymerization mechanism of 2, 5-distyrylpyrazine,” J. Polym. Sci. A-1, 753–766 (1969).

F. Suzuki, Y. Suzuki, H. Nakanishi, and M. Hasegawa, “Four-center type photopolymerization in the solid state. 3. Polymerization of phenylene diacrylic acid and its derivatives,” J. Polym. Sci. A-1, 2319–2331 (1969).

Suzuki, Y.

F. Suzuki, Y. Suzuki, H. Nakanishi, and M. Hasegawa, “Four-center type photopolymerization in the solid state. 3. Polymerization of phenylene diacrylic acid and its derivatives,” J. Polym. Sci. A-1, 2319–2331 (1969).

H. Nakanishi, Y. Suzuki, F. Suzuki, and M. Hasegawa, “Four-center type photopolymerization in the solid state. 2. Polymerization mechanism of 2, 5-distyrylpyrazine,” J. Polym. Sci. A-1, 753–766 (1969).

M. Hasegawa, Y. Suzuki, and H. Nakanishi, “Four-center type photopolymerization in the crystalline state. 1. Polymerization of 2, 5-distyrylpyrazine and related compounds,” J. Polym. Sci. A-1, 743–752 (1969).

Tomlinson, W. J.

Van Deusen, W. P.

E. M. Robertson, W. P. Van Deusen, and L. M. Minsk, “Photosensitive polymers. 2. Sensitization of poly(vinyl cinnamate),” J. Appl. Polym. Sci. 2, 308–311 (1959).
[Crossref]

Weber, H. P.

Wopschall, R. H.

Appl. Opt. (7)

J. Appl. Polym. Sci. (1)

E. M. Robertson, W. P. Van Deusen, and L. M. Minsk, “Photosensitive polymers. 2. Sensitization of poly(vinyl cinnamate),” J. Appl. Polym. Sci. 2, 308–311 (1959).
[Crossref]

J. Opt. Soc. Am. (1)

J. Polym. Sci. (3)

M. Hasegawa, Y. Suzuki, and H. Nakanishi, “Four-center type photopolymerization in the crystalline state. 1. Polymerization of 2, 5-distyrylpyrazine and related compounds,” J. Polym. Sci. A-1, 743–752 (1969).

H. Nakanishi, Y. Suzuki, F. Suzuki, and M. Hasegawa, “Four-center type photopolymerization in the solid state. 2. Polymerization mechanism of 2, 5-distyrylpyrazine,” J. Polym. Sci. A-1, 753–766 (1969).

F. Suzuki, Y. Suzuki, H. Nakanishi, and M. Hasegawa, “Four-center type photopolymerization in the solid state. 3. Polymerization of phenylene diacrylic acid and its derivatives,” J. Polym. Sci. A-1, 2319–2331 (1969).

J. Polym. Sci. Polym. Chemi. Edi. (1)

F. Nakanishi, H. Nakanishi, and M. Hasegawa, “Four-center type photopolymerization in the solid state. 7. Photochemical reaction of m-phenelene diacrylic acid dimethyl ester,” J. Polym. Sci. Polym. Chemi. Edi. 13, 2499–2506 (1975).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

FIG. 1
FIG. 1

(a) Molecular structure. (b) Known photochemical reaction process of m-PDA.

FIG. 2
FIG. 2

Optical arrangement for the recording of holographic grating.

FIG. 3
FIG. 3

Optical arrangement for measuring the diffraction efficiency. θ, Bragg angle; I, incident beam; I0, zeroth-order diffracted beam; I1 first-order diffracted beam.

FIG. 4
FIG. 4

Photomicrograph of (a) plate before exposure, (b) plate after exposure, (c) plate recorded holographic gratings of 1040 lines/mm (after heating).

FIG. 5
FIG. 5

Diffraction efficiency as a function of exposure power.

FIG. 6
FIG. 6

Optical arrangement to contest the durability of fixed plate. I, incident beam; I0 zeroth-order diffracted beam; I−1, −first-order diffracted beam; I+1, + first-order diffracted beam.

FIG. 7
FIG. 7

Ratio of first-order diffracted beam intensity to zeroth-order one as a function of exposure time.

FIG. 8
FIG. 8

Diffraction efficiency as a function of development time.

FIG. 9
FIG. 9

Schematic representations of refractive index change (Δn) with reference to each recording procedure, exposure, development, and fixation.

FIG. 10
FIG. 10

Photographs of (a) object and (b) hologram image reconstructed by 442-nm He-Cd laser.

FIG. 11
FIG. 11

Optical arrangement for the recording of lensless Fourier-transformed hologram.

Tables (1)

Tables Icon

TABLE I Comparison of our materials with those of several photopolymers already known.