Abstract

A considerable index-of-refraction modulation effect was found to occur in a negative photoresist when molecular-mass-diffusion is facilitated. This resist may then be used either as an autodeveloping index-modulation recording material, or as a surface-modulation recording material or both, depending on the procedure utilized for recording and developing. Surface and index modulation are studied in a thin resist film by recording a 100 l/mm grating on it and measuring its diffraction spectrum. An approximative though simple method for analyzing this spectrum used in finding out the corresponding grating transmission phase modulation is briefly exposed.

© 1977 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. S. Colburn and K. A. Haines, “Volume Hologram Formation in Photopolymer Materials,” Appl. Opt. 10, 1636 (19711).
    [Crossref]
  2. R. Wopschall and T. Pampalone, “Dry Photopolymer Film for Recording Holograms,” Appl. Opt. 11, 2096 (1972).
    [Crossref] [PubMed]
  3. B. Booth, “Photopolymer Material for Holography,” Appl. Opt. 14, 593 (1975).
    [Crossref] [PubMed]
  4. A. A. Friesem, Z. Rav-Noy, and S. Reich, “Photodielectric Polymer for Holographic Recording,” Appl. Opt. 16, 427 (1977).
    [Crossref] [PubMed]
  5. J. J. Clair, J. Frejlich, J. M. Jonathan, and L. H. Torres, “Negative Photoresists and Integrated Optics,” Nouv. Rev. Opt. 6, 303 (1975).
    [Crossref]
  6. J. J. Clair, J. Frejlich, J. M. Jonathan, J. M. Van Haecke, and J. Rosiu, in “Proceedings of the Electro-optics/Laser Interactional ’76 UK Conference” (IPC Science and Technology Press, London, 1976).
  7. J. Frejlich and J. J. Clair, “A simple mathematical model for negative photoresist behavior,” J. Opt. Soc. Am. 67, 92 (1977).
    [Crossref]
  8. In fact, some very slight index modulation appeared before developing, even when mass diffusion was not facilitated.
  9. J. Jenney, “Holographic recording with photopolymers,” J. Opt. Soc. Am. 60, 1155 (1970).
    [Crossref]
  10. W. J. Tomlinson, E. W. Chandross, H. P. Weber, and G. D. Aumiller, “Multicomponent Photopolymer Systems for Volume Phase Holograms and Grating Devices,” Appl. Opt. 15, 534 (1976).
    [Crossref] [PubMed]
  11. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1968), pp. 69–70.

1977 (2)

1976 (1)

1975 (2)

B. Booth, “Photopolymer Material for Holography,” Appl. Opt. 14, 593 (1975).
[Crossref] [PubMed]

J. J. Clair, J. Frejlich, J. M. Jonathan, and L. H. Torres, “Negative Photoresists and Integrated Optics,” Nouv. Rev. Opt. 6, 303 (1975).
[Crossref]

1972 (1)

1970 (1)

Aumiller, G. D.

Booth, B.

Chandross, E. W.

Clair, J. J.

J. Frejlich and J. J. Clair, “A simple mathematical model for negative photoresist behavior,” J. Opt. Soc. Am. 67, 92 (1977).
[Crossref]

J. J. Clair, J. Frejlich, J. M. Jonathan, and L. H. Torres, “Negative Photoresists and Integrated Optics,” Nouv. Rev. Opt. 6, 303 (1975).
[Crossref]

J. J. Clair, J. Frejlich, J. M. Jonathan, J. M. Van Haecke, and J. Rosiu, in “Proceedings of the Electro-optics/Laser Interactional ’76 UK Conference” (IPC Science and Technology Press, London, 1976).

Colburn, W. S.

Frejlich, J.

J. Frejlich and J. J. Clair, “A simple mathematical model for negative photoresist behavior,” J. Opt. Soc. Am. 67, 92 (1977).
[Crossref]

J. J. Clair, J. Frejlich, J. M. Jonathan, and L. H. Torres, “Negative Photoresists and Integrated Optics,” Nouv. Rev. Opt. 6, 303 (1975).
[Crossref]

J. J. Clair, J. Frejlich, J. M. Jonathan, J. M. Van Haecke, and J. Rosiu, in “Proceedings of the Electro-optics/Laser Interactional ’76 UK Conference” (IPC Science and Technology Press, London, 1976).

Friesem, A. A.

Goodman, J. W.

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1968), pp. 69–70.

Haines, K. A.

Jenney, J.

Jonathan, J. M.

J. J. Clair, J. Frejlich, J. M. Jonathan, and L. H. Torres, “Negative Photoresists and Integrated Optics,” Nouv. Rev. Opt. 6, 303 (1975).
[Crossref]

J. J. Clair, J. Frejlich, J. M. Jonathan, J. M. Van Haecke, and J. Rosiu, in “Proceedings of the Electro-optics/Laser Interactional ’76 UK Conference” (IPC Science and Technology Press, London, 1976).

Pampalone, T.

Rav-Noy, Z.

Reich, S.

Rosiu, J.

J. J. Clair, J. Frejlich, J. M. Jonathan, J. M. Van Haecke, and J. Rosiu, in “Proceedings of the Electro-optics/Laser Interactional ’76 UK Conference” (IPC Science and Technology Press, London, 1976).

Tomlinson, W. J.

Torres, L. H.

J. J. Clair, J. Frejlich, J. M. Jonathan, and L. H. Torres, “Negative Photoresists and Integrated Optics,” Nouv. Rev. Opt. 6, 303 (1975).
[Crossref]

Van Haecke, J. M.

J. J. Clair, J. Frejlich, J. M. Jonathan, J. M. Van Haecke, and J. Rosiu, in “Proceedings of the Electro-optics/Laser Interactional ’76 UK Conference” (IPC Science and Technology Press, London, 1976).

Weber, H. P.

Wopschall, R.

Appl. Opt. (5)

J. Opt. Soc. Am. (2)

Nouv. Rev. Opt. (1)

J. J. Clair, J. Frejlich, J. M. Jonathan, and L. H. Torres, “Negative Photoresists and Integrated Optics,” Nouv. Rev. Opt. 6, 303 (1975).
[Crossref]

Other (3)

J. J. Clair, J. Frejlich, J. M. Jonathan, J. M. Van Haecke, and J. Rosiu, in “Proceedings of the Electro-optics/Laser Interactional ’76 UK Conference” (IPC Science and Technology Press, London, 1976).

In fact, some very slight index modulation appeared before developing, even when mass diffusion was not facilitated.

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1968), pp. 69–70.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

FIG. 1
FIG. 1

Reflection interferential microscope photograph of grating No. 1. A 546 nm wavelength light was used for this and for Nos. 2–5 as well. Because of resolution limitations of the microscope, these photographs represent the convolution of the real profile by the diffraction limit of our instrument (the rectangle length of the gratings are of approximately 4 μm, the period of 10 μm, and the diffraction limit of the microscope is approximately of 0. 5 μm); a distortion is also arising from depth-of-field limitations of the microscope.

FIG. 2
FIG. 2

Reflection interferential microscope photograph of grating No. 2.

FIG. 3
FIG. 3

Reflection interferential microscope photograph of grating No. 3.

FIG. 4
FIG. 4

Reflection interferential microscope photograph of grating No. 4.

FIG. 5
FIG. 5

Reflection interferential microscope photograph of grating No. 5.

FIG. 6
FIG. 6

Evolution of first- to zero-order diffraction intensity and of phase modulation for a 100 lines/mm Microresist 747 phase grating while heating at 70–80 °C after recording and prior to development. A 6328 Å wavelength laser beam was used for measurements; measurements were made at room temperature.

FIG. 7
FIG. 7

Scheme of a developed resist film.

FIG. 8
FIG. 8

Block diagram showing different possibilities in KMR747 negative resist processing.

FIG. 9
FIG. 9

Sinusoidal phase grating. Diffraction intensity for different orders (k = 1, 2, 3, …) relative to zero-order intensity Ik/I0, using a 6328 Å wavelength laser beam [see Eq. (4)]. (—) left-side scale; (– – –) right-side scale.

FIG. 10
FIG. 10

Transmittance of a rectangular phase grating.

Tables (2)

Tables Icon

TABLE I Experimental and calculated data (a) at 80°C for a long time, enough to reach saturation, then a uniform light fixing exposure is made so as to polymerize the whole; development is carried out in the usual way; (b) see photographs of Figs. 15; (c) kth-order to zero-order diffraction intensity ratio; (d) see Appendix A; (e) using Eq. (1); (f) average value calculated from sample Nos. 1 and 2; (g) using Eq. (2).

Tables Icon

TABLE II Index and surface modulation for grating No. 5 before and after development. (a) See Appendix A; (b) index average values calculated on sample Nos. 1 and 2; (c) using Eq. (2); (d) using Eq. (2) with l0/l = 0. A 20% reduction In film thickness appears after development, and this is probably the reason for the increase in the index-of-refraction modulation value.

Equations (26)

Equations on this page are rendered with MathJax. Learn more.

n = 1 + ( x λ / 2 π l 0 ) ,
n = 1. 6 ± 0. 05 .
n 1 n 2 = x λ / ( 2 π l ) + ( l 0 / l ) [ 1 ( n 1 + n 2 ) / 2 ] ,
K D = 4 π 2 D / p 2 ,
I k ( x / 2 ) I 0 ( x / 2 ) = ( J k ( x / 2 ) J 0 ( x / 2 ) ) 2 ,
I k ( x ) I 0 ( x ) = 2 a 2 ( 1 cos x ) 1 + 2 a ( a 1 ) ( 1 cos x ) ( sin π k a π k a ) 2 .
x = arccos ( 1 1 2 a 2 ( I k / I 0 ) ( sin π k a π k a ) 2 2 a ( a 1 ) ) .
x ( I 1 / I 0 , a ) = x ( I 2 / I 0 , a ) ,
a = 1 π arccos ( I 2 / I 1 ) 1 / 2 ,
T 1 = e i M 1 and T 2 = e i M 2 ,
T ( z ) = [ T 1 rect ( z S ) + T 2 rect ( z ( p S ) ) * δ ( z p 2 ) ] * ( z , p ) p ,
( z / p ) p * [ rect ( z S ) + rect ( z ( p S ) ) * δ ( z p 2 ) ] = 1 .
T ( z ) = T 2 + ( T 1 T 2 ) rect ( z s ) * ( z / p ) p ,
T ( f ) = T 2 δ ( f ) + ( T 1 T 2 ) ( S p ) ( sin π S f π S f ) p ( f p ) ,
| T ( f ) | 2 = 2 ( 1 cos x ) ( S p ) 2 ( sin π S f π S f ) 2 k = + δ ( f k p ) + δ ( f ) 2 ( 1 cos x ) ( S p ) ( sin π S f π S f ) δ ( f ) ,
I k = + | T ( f ) | 2 δ ( f k ) d f = | T ( f ) | 2 * δ ( f ) .
I 0 = 1 + 2 a ( a 1 ) ( 1 cos x ) ,
I k = 2 a 2 ( sin π k a π k a ) 2 ( 1 cos x ) ,
I k ( x ) I 0 ( x ) = 2 a 2 ( sin π a k π a k ) 2 ( 1 cos x ) 1 + 2 a ( a 1 ) ( 1 cos x ) .
t D = x 2 / D ,
K D = 4 π 2 D / p 2 ,
C ( x , t ) = C ( x , t ) C ¯ ,
D div ( grad C ) = C / t ,
C ( x = 0 , t ) = 0 , C ( x = p / 4 , t = 0 ) = C 0 , [ C / x ] x = p / 4 = 0 , and lim t C ( x , t ) = 0 ,
C ( x , t ) = X ( x ) T ( t ) ,
C ( x , t ) = C 0 sin [ ( K D / D ) 1 / 2 p / 4 ] sin ( K D / D x ) e K D t