Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Light emission by magnetic and electric dipoles close to a plane interface. I. Total radiated power

Not Accessible

Your library or personal account may give you access

Abstract

Expressions for the total power radiated by magnetic and electric dipoles of arbitrary orientation located in a medium 1 at distance z0 from the interface to a homogeneous or planar stratified medium 2 are derived. A relation between the normalized powers radiated by magnetic and electric dipoles is established. For a homogeneous loss-free medium 2, curves of the normalized powers L(z0)/L radiated by magnetic and electric dipoles versus the normalized distance z0/λ1 are presented for different values of the relative refractive index n = n2/n1 as the only parameter. The computer calculations are compared with analytical expressions derived for small and large distances. For n > 1, the contribution of the evanescent waves to the radiated power is calculated separately. We show that the classical results for the normalized radiated power yield the correct normalized spontaneous emission rates from an excited atomic state for electric and magnetic dipole transitions, respectively. We point out that the results for the electric dipole also give the change of the total power scattered by a small dielectric scattering particle when it is placed close to an interface.

© 1977 Optical Society of America

Full Article  |  PDF Article

Corrections

W. Lukosz and R. E. Kunz, "Errata: Light emission by magnetic and electric dipoles close to a plane interface. I. Total radiated power," J. Opt. Soc. Am. 68, 1155_1-1155 (1978)
https://opg.optica.org/josa/abstract.cfm?uri=josa-68-8-1155_1

More Like This

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (68)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved