Abstract

We have measured the near-field diffraction on the axis, shadow side of a perfectly conducting disk with precision an order of magnitude higher than previously available. The normally incident plane-polarized plane wave had a wavelength of 10 cm. The higher precision was obtained by use of a small, photoetched, electric probe antenna of gold on an alumina substrate with a microscopic Schottky diode at the center of the dipole detector. The small probe required a magnetron source of 10 W output at the distance of 10 m in a tapered anechoic chamber. Scans were made with 70 aluminum disks ranging in diameters from 0.04 to 2.50 wavelengths. The scans extended from the disk to a distance of two diameters. The first maximum for a resonant disk, circumference 1.1 wavelengths, and a distance from the disk of 0.65 disk diameters was |E|2/|E0|2 = 1.54.

© 1977 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Sommerfeld, Optics (Academic, New York, 1964), Vol. 4, pp. 247–265.
  2. J. Meixner and W. Andrejewski, “Strange Theorie der Beugung ebener elektromagnetischer Wellen an der volkommen leitenden Kreisscheibe und an der Kreisformigen Offnung im vollkommen leitenden obenen Schirm,” Ann. d. Phys. 7, 157–168 (1960).
  3. W. Andrejewski, Doctoral Thesis, Die Beugung elektromagnetischer Wellen, Göttltigen (1952), pp. 1–113 (unpublished).
  4. C. R. Carpenter and C. L. Andrews, “Measurement of surface current densities,” J. Opt. Soc. Am. 65, 246–247 (1975).
    [Crossref]
  5. C. R. Carpenter, Doctoral thesis, “Electromagnetic Diffraction by a Thin Disk on the Shadow Side in the Near Region,” (Department of Physics, State University of New York at Albany, 1973) (unpublished) (University Microfilms, Ann Arbor, Mich., Order No. 7325701).
  6. Obtained from Micro Pac Industries-Thin Film Products, 2837 Ladybird Lane, Dallas, Tex. 75220.
  7. No. A2S255 Zero-bias Bean-Lead Schottky Diodes are obtained from AERTECH Industries, 825 Stewart Dr., Sunnyvale, Calif. 94086.
  8. Epo-Tek Single Component Epoxy H31 obtained from Epoxy Technology, Inc., 65 Grove St., Watertown, Mass. 02172.
  9. KeithIy 610B electrometer. Keithly Instruments, Inc., 12415 Euclid Ave., Cleveland, Oh. 44106.
  10. Obtained from Polymer Corporation, 2120 Fairmont Ave., Reading, Penn. 19603.
  11. Frank M. Green, “Development of Electric and Magnetic Near-Field Probes,” Nat. Bur. Stand. (U.S.) Technical Note 658, 1–47 (1975); Electromagnetics Division, Institute for Basic Standards, Boulder, Colo. 80302.
  12. R. O. Dell, C. R. Carpenter, and C. L. Andrews, “Optical design of anechoic chambers,” J. Opt. Soc. Am. 62, 902–906 (1972).
    [Crossref]
  13. Precision Variable Attenuator, Mod. S-382C; Hewlett-Packard, 1820 Embarcadero Rd., Palo Alto, Calif. 94303.

1975 (1)

1972 (1)

1960 (1)

J. Meixner and W. Andrejewski, “Strange Theorie der Beugung ebener elektromagnetischer Wellen an der volkommen leitenden Kreisscheibe und an der Kreisformigen Offnung im vollkommen leitenden obenen Schirm,” Ann. d. Phys. 7, 157–168 (1960).

Andrejewski, W.

J. Meixner and W. Andrejewski, “Strange Theorie der Beugung ebener elektromagnetischer Wellen an der volkommen leitenden Kreisscheibe und an der Kreisformigen Offnung im vollkommen leitenden obenen Schirm,” Ann. d. Phys. 7, 157–168 (1960).

W. Andrejewski, Doctoral Thesis, Die Beugung elektromagnetischer Wellen, Göttltigen (1952), pp. 1–113 (unpublished).

Andrews, C. L.

Carpenter, C. R.

C. R. Carpenter and C. L. Andrews, “Measurement of surface current densities,” J. Opt. Soc. Am. 65, 246–247 (1975).
[Crossref]

R. O. Dell, C. R. Carpenter, and C. L. Andrews, “Optical design of anechoic chambers,” J. Opt. Soc. Am. 62, 902–906 (1972).
[Crossref]

C. R. Carpenter, Doctoral thesis, “Electromagnetic Diffraction by a Thin Disk on the Shadow Side in the Near Region,” (Department of Physics, State University of New York at Albany, 1973) (unpublished) (University Microfilms, Ann Arbor, Mich., Order No. 7325701).

Dell, R. O.

Green, Frank M.

Frank M. Green, “Development of Electric and Magnetic Near-Field Probes,” Nat. Bur. Stand. (U.S.) Technical Note 658, 1–47 (1975); Electromagnetics Division, Institute for Basic Standards, Boulder, Colo. 80302.

Meixner, J.

J. Meixner and W. Andrejewski, “Strange Theorie der Beugung ebener elektromagnetischer Wellen an der volkommen leitenden Kreisscheibe und an der Kreisformigen Offnung im vollkommen leitenden obenen Schirm,” Ann. d. Phys. 7, 157–168 (1960).

Sommerfeld, A.

A. Sommerfeld, Optics (Academic, New York, 1964), Vol. 4, pp. 247–265.

Ann. d. Phys. (1)

J. Meixner and W. Andrejewski, “Strange Theorie der Beugung ebener elektromagnetischer Wellen an der volkommen leitenden Kreisscheibe und an der Kreisformigen Offnung im vollkommen leitenden obenen Schirm,” Ann. d. Phys. 7, 157–168 (1960).

J. Opt. Soc. Am. (2)

Other (10)

C. R. Carpenter, Doctoral thesis, “Electromagnetic Diffraction by a Thin Disk on the Shadow Side in the Near Region,” (Department of Physics, State University of New York at Albany, 1973) (unpublished) (University Microfilms, Ann Arbor, Mich., Order No. 7325701).

Obtained from Micro Pac Industries-Thin Film Products, 2837 Ladybird Lane, Dallas, Tex. 75220.

No. A2S255 Zero-bias Bean-Lead Schottky Diodes are obtained from AERTECH Industries, 825 Stewart Dr., Sunnyvale, Calif. 94086.

Epo-Tek Single Component Epoxy H31 obtained from Epoxy Technology, Inc., 65 Grove St., Watertown, Mass. 02172.

KeithIy 610B electrometer. Keithly Instruments, Inc., 12415 Euclid Ave., Cleveland, Oh. 44106.

Obtained from Polymer Corporation, 2120 Fairmont Ave., Reading, Penn. 19603.

Frank M. Green, “Development of Electric and Magnetic Near-Field Probes,” Nat. Bur. Stand. (U.S.) Technical Note 658, 1–47 (1975); Electromagnetics Division, Institute for Basic Standards, Boulder, Colo. 80302.

Precision Variable Attenuator, Mod. S-382C; Hewlett-Packard, 1820 Embarcadero Rd., Palo Alto, Calif. 94303.

W. Andrejewski, Doctoral Thesis, Die Beugung elektromagnetischer Wellen, Göttltigen (1952), pp. 1–113 (unpublished).

A. Sommerfeld, Optics (Academic, New York, 1964), Vol. 4, pp. 247–265.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

FIG. 1
FIG. 1

Electric dipole detector consisting of a photoetched antenna of gold on a substrate of alumina. The leads from the antenna to the electrometer consist of carbon impregnated Teflon.

FIG. 2
FIG. 2

Tapered anechoic chamber with point source of microwaves at the vertex, diffracting object DO and quiet zone OZ. (a) The rectangular chamber is shown for comparison. Reflection at glancing angle from the central region is reflected into the working region. (b) In the tapered chamber the reflection at glancing angle does not enter the working region. (c) The end panel was turned about hinge H by trial and error until the irradiance throughout the quiet zone was most uniform.

FIG. 3
FIG. 3

Sample set of graphical recordings of |E|2/|E0|2 against z/D. The diameters of disks in wavelengths D/λ are indicated from 0. 15 to 2. 00. Because of the close spacing, only one curve is shown for the cases of D/λ = 0. 34, 0. 36, and 0. 38 represented by the curve and data points ○ and △, respectively.

FIG. 4
FIG. 4

Closely spaced points of |E|2/|E0|2 against D/λ, each taken from the recordings for seventy disks of relative diameter D/λ = 0. 04 to 2. 20. Each curve corresponds to a fixed value of z/D. The data indicated by o in figures on the right-hand side were not taken from the scans but made at the fixed points with the aid of a precision attenuator at the source and independent of deviations of the detector from square-law behavior.

Tables (2)

Tables Icon

TABLE I Measurement of |E|2/|E0|2 by use of precise attenuator when the detector position Z/D = 0. 5.

Tables Icon

TABLE II Measurement of. |E|2/|E0|2 by use of precise attenuator when the detector position Z/D = 1. 0.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

| E | 2 | E 0 | 2
| E | 2 | E 0 | 2