Abstract

Two-pulse discrimination thresholds determined for homochromatic pulses presented as luminance increments or decrements are invariant with wavelength. Wavelength does affect two-pulse temporal resolution if chromatic pulses are presented in hue substitution, matched in luminance (with flicker photometry) to an achromatic background field. For relatively long pulses, the wavelength effect resembles trichromatic saturation discrimination, with poorest temporal resolution at 570 nm. For shorter pulses, temporal resolution for hue substitution stimuli appears related to saturation discrimination under conditions of artificial tritanopia. Under conditions of hue substitution, short-wavelength pulses yield good temporal resolution.

© 1977 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Weingarten, “Wavelength effect on visual latency,” Science 176, 692–694 (1972).
    [Crossref] [PubMed]
  2. M. E. Breton, “Hue substitution: Wavelength latency effects,” Vision Res. 17, 435–443 (1977).
    [Crossref] [PubMed]
  3. M. J. Nissen and J. Pokorny, “Wavelength effects on simple reaction time” Percept. Psychophys. (in press).
  4. R. W. Bowen, J. Pokorny, and D. Cacciato, “Metacontrast masking depends on luminance transients,” Vision Res. 17, 971–975 (1977).
    [Crossref] [PubMed]
  5. G. J. C. van der Horst, “Chromatic flicker,” J. Opt. Soc. Am. 59, 1213–1217 (1969).
    [Crossref] [PubMed]
  6. D. Regan and C. W. Tyler, “A wavelength modulated light generator,” Vision Res. 11, 43–56 (1971).
    [Crossref] [PubMed]
  7. D. Regan and C. W. Tyler, “Some dynamic features of colour vision,” Vision Res. 11, 1307–1324 (1971).
    [Crossref] [PubMed]
  8. D. H. Kelly, “Luminous and chromatic flickering patterns hav opposite effects,” Science 188, 371–372 (1975).
    [Crossref] [PubMed]
  9. P. L. Walraven, H. J. Leebeek, and M. A. Bouman, “Some measurements about the fusion frequency of colors,” Opt. Acta 5, 50–54 (1958).
  10. R. M. Boynton, “Discrimination of homogeneous double pulses of light,” in Visual Psychophysics, Vol. VII/4, Handbook of Sensory Physiology, edited by D. Jameson and L. Hurvich (Springer-Verlag, Berlin, 1972), Chap. 9.
    [Crossref]
  11. H. E. Ives and E. F. Kingsbury, “The theory of the flicker photometer,” Philos. Mag. 28, 708–728 (1914).
  12. L. T. Troland, “Notes on flicker photometry: Flicker-photometry frequency as a function of light intensity,” J. Franklin Inst. 182, 261–263 (1916).
    [Crossref]
  13. H. E. Ives, “A polarization flicker photometer and some data of theoretical bearing obtained with it,” Philos. Mag. 33, 360–380 (1917).
  14. M. F. Lewis, “Two-flash thresholds as a function of luminance in the dark-adapted eye,” J. Opt. Soc. Am. 57, 814–815 (1967).
    [Crossref] [PubMed]
  15. L. T. Troland, “Report of the Committee on Colorimetry for 1920–1921,” J. Opt. Soc. Am. 6, 527–596 (1922).
    [Crossref]
  16. V. C. Smith and J. Pokorny, “Autosomal dominant tritanopia, Invest. Ophthalmol. 13, 706–707 (1974).
    [PubMed]
  17. L. Hurvich, “Color vision deficiencies,” in Visual Psychophysics, Vol. VII/4, Handbook of Sensory Physiology, edited by D. Jameson and L. Hurvich (Springer-Verlag, Berlin, 1972), Chap. 23.
    [Crossref]
  18. W. D. Wright, “The characteristics of tritanopia,” J. Opt. Soc. Am. 42, 509–521 (1952).
    [Crossref] [PubMed]
  19. A. E. Krill, V. C. Smith, and J. Pokorny, “Further studies supporting the identity of congenital tritanopia and hereditary dominant optic atrophy,” Invest. Ophthalmol. 10, 457–465 (1917).
  20. D. Farnsworth, “Tritanomalous vision as a threshold function,” Die Farbe. 4, 185–196 (1955).
  21. A. Mahneke, “Foveal discrimination measured with two successive light flashes,” Acta Ophthalmol. (Kbh.) 36, 3–11 (1958).
    [Crossref]
  22. D. Jameson and L. Hurvich, “Some quantitative aspects of an opponent-colors theory. I. Chromatic responses and spectral saturation,” J. Opt. Soc. Am. 45, 546–552 (1955).
    [Crossref]
  23. S. L. Guth and H. Lodge, “Heterochromatic additivity, foveal spectral sensitivity, and a new color model,” J. Opt. Soc. Am. 63, 450–462 (1973).
    [Crossref] [PubMed]
  24. P. K. Kaiser, J. P. Comerford, and D. M. Bodinger, “Saturation of spectral lights,” J. Opt. Soc. Am. 66, 818–826 (1976).
    [Crossref]
  25. D. H. Kelly, “Diffusion model of linear flicker responses,” J. Opt. Soc. Am. 59, 1665–1670 (1969).
    [Crossref] [PubMed]
  26. D. H. Kelly, R. M. Boynton, and W. S. Baron, “Primate flicker sensitivity: Psychophysics and electrophysiology,” Science 194, 1077–1079 (1976).
    [Crossref] [PubMed]
  27. S. L. Guth, T. Benzschawel, and A. Friedman, “Postreceptor chromatic adaptation,” J. Opt. Soc. Am. 66, 1103A (1976).
  28. G. S. Brindley, J. J. Du Croz, and W. A. H. Rushton, “The flicker fusion frequency of the blue-sensitive mechanism in colour vision,” J. Physiol. 183, 497–500 (1966).
  29. D. G. Green, “Sinusoidal flicker characteristics of the color-sensitive mechanisms of the eye,” Vision Res. 9, 591–601 (1969).
    [Crossref] [PubMed]
  30. D. H. Kelly, “Spatio-temporal frequency characteristics of color-vision mechanisms,” J. Opt. Soc. Am. 64, 983–990 (1974).
    [Crossref]

1977 (2)

M. E. Breton, “Hue substitution: Wavelength latency effects,” Vision Res. 17, 435–443 (1977).
[Crossref] [PubMed]

R. W. Bowen, J. Pokorny, and D. Cacciato, “Metacontrast masking depends on luminance transients,” Vision Res. 17, 971–975 (1977).
[Crossref] [PubMed]

1976 (3)

D. H. Kelly, R. M. Boynton, and W. S. Baron, “Primate flicker sensitivity: Psychophysics and electrophysiology,” Science 194, 1077–1079 (1976).
[Crossref] [PubMed]

S. L. Guth, T. Benzschawel, and A. Friedman, “Postreceptor chromatic adaptation,” J. Opt. Soc. Am. 66, 1103A (1976).

P. K. Kaiser, J. P. Comerford, and D. M. Bodinger, “Saturation of spectral lights,” J. Opt. Soc. Am. 66, 818–826 (1976).
[Crossref]

1975 (1)

D. H. Kelly, “Luminous and chromatic flickering patterns hav opposite effects,” Science 188, 371–372 (1975).
[Crossref] [PubMed]

1974 (2)

V. C. Smith and J. Pokorny, “Autosomal dominant tritanopia, Invest. Ophthalmol. 13, 706–707 (1974).
[PubMed]

D. H. Kelly, “Spatio-temporal frequency characteristics of color-vision mechanisms,” J. Opt. Soc. Am. 64, 983–990 (1974).
[Crossref]

1973 (1)

1972 (1)

F. Weingarten, “Wavelength effect on visual latency,” Science 176, 692–694 (1972).
[Crossref] [PubMed]

1971 (2)

D. Regan and C. W. Tyler, “A wavelength modulated light generator,” Vision Res. 11, 43–56 (1971).
[Crossref] [PubMed]

D. Regan and C. W. Tyler, “Some dynamic features of colour vision,” Vision Res. 11, 1307–1324 (1971).
[Crossref] [PubMed]

1969 (3)

1967 (1)

1966 (1)

G. S. Brindley, J. J. Du Croz, and W. A. H. Rushton, “The flicker fusion frequency of the blue-sensitive mechanism in colour vision,” J. Physiol. 183, 497–500 (1966).

1958 (2)

A. Mahneke, “Foveal discrimination measured with two successive light flashes,” Acta Ophthalmol. (Kbh.) 36, 3–11 (1958).
[Crossref]

P. L. Walraven, H. J. Leebeek, and M. A. Bouman, “Some measurements about the fusion frequency of colors,” Opt. Acta 5, 50–54 (1958).

1955 (2)

1952 (1)

1922 (1)

1917 (2)

A. E. Krill, V. C. Smith, and J. Pokorny, “Further studies supporting the identity of congenital tritanopia and hereditary dominant optic atrophy,” Invest. Ophthalmol. 10, 457–465 (1917).

H. E. Ives, “A polarization flicker photometer and some data of theoretical bearing obtained with it,” Philos. Mag. 33, 360–380 (1917).

1916 (1)

L. T. Troland, “Notes on flicker photometry: Flicker-photometry frequency as a function of light intensity,” J. Franklin Inst. 182, 261–263 (1916).
[Crossref]

1914 (1)

H. E. Ives and E. F. Kingsbury, “The theory of the flicker photometer,” Philos. Mag. 28, 708–728 (1914).

Baron, W. S.

D. H. Kelly, R. M. Boynton, and W. S. Baron, “Primate flicker sensitivity: Psychophysics and electrophysiology,” Science 194, 1077–1079 (1976).
[Crossref] [PubMed]

Benzschawel, T.

S. L. Guth, T. Benzschawel, and A. Friedman, “Postreceptor chromatic adaptation,” J. Opt. Soc. Am. 66, 1103A (1976).

Bodinger, D. M.

Bouman, M. A.

P. L. Walraven, H. J. Leebeek, and M. A. Bouman, “Some measurements about the fusion frequency of colors,” Opt. Acta 5, 50–54 (1958).

Bowen, R. W.

R. W. Bowen, J. Pokorny, and D. Cacciato, “Metacontrast masking depends on luminance transients,” Vision Res. 17, 971–975 (1977).
[Crossref] [PubMed]

Boynton, R. M.

D. H. Kelly, R. M. Boynton, and W. S. Baron, “Primate flicker sensitivity: Psychophysics and electrophysiology,” Science 194, 1077–1079 (1976).
[Crossref] [PubMed]

R. M. Boynton, “Discrimination of homogeneous double pulses of light,” in Visual Psychophysics, Vol. VII/4, Handbook of Sensory Physiology, edited by D. Jameson and L. Hurvich (Springer-Verlag, Berlin, 1972), Chap. 9.
[Crossref]

Breton, M. E.

M. E. Breton, “Hue substitution: Wavelength latency effects,” Vision Res. 17, 435–443 (1977).
[Crossref] [PubMed]

Brindley, G. S.

G. S. Brindley, J. J. Du Croz, and W. A. H. Rushton, “The flicker fusion frequency of the blue-sensitive mechanism in colour vision,” J. Physiol. 183, 497–500 (1966).

Cacciato, D.

R. W. Bowen, J. Pokorny, and D. Cacciato, “Metacontrast masking depends on luminance transients,” Vision Res. 17, 971–975 (1977).
[Crossref] [PubMed]

Comerford, J. P.

Du Croz, J. J.

G. S. Brindley, J. J. Du Croz, and W. A. H. Rushton, “The flicker fusion frequency of the blue-sensitive mechanism in colour vision,” J. Physiol. 183, 497–500 (1966).

Farnsworth, D.

D. Farnsworth, “Tritanomalous vision as a threshold function,” Die Farbe. 4, 185–196 (1955).

Friedman, A.

S. L. Guth, T. Benzschawel, and A. Friedman, “Postreceptor chromatic adaptation,” J. Opt. Soc. Am. 66, 1103A (1976).

Green, D. G.

D. G. Green, “Sinusoidal flicker characteristics of the color-sensitive mechanisms of the eye,” Vision Res. 9, 591–601 (1969).
[Crossref] [PubMed]

Guth, S. L.

S. L. Guth, T. Benzschawel, and A. Friedman, “Postreceptor chromatic adaptation,” J. Opt. Soc. Am. 66, 1103A (1976).

S. L. Guth and H. Lodge, “Heterochromatic additivity, foveal spectral sensitivity, and a new color model,” J. Opt. Soc. Am. 63, 450–462 (1973).
[Crossref] [PubMed]

Hurvich, L.

D. Jameson and L. Hurvich, “Some quantitative aspects of an opponent-colors theory. I. Chromatic responses and spectral saturation,” J. Opt. Soc. Am. 45, 546–552 (1955).
[Crossref]

L. Hurvich, “Color vision deficiencies,” in Visual Psychophysics, Vol. VII/4, Handbook of Sensory Physiology, edited by D. Jameson and L. Hurvich (Springer-Verlag, Berlin, 1972), Chap. 23.
[Crossref]

Ives, H. E.

H. E. Ives, “A polarization flicker photometer and some data of theoretical bearing obtained with it,” Philos. Mag. 33, 360–380 (1917).

H. E. Ives and E. F. Kingsbury, “The theory of the flicker photometer,” Philos. Mag. 28, 708–728 (1914).

Jameson, D.

Kaiser, P. K.

Kelly, D. H.

D. H. Kelly, R. M. Boynton, and W. S. Baron, “Primate flicker sensitivity: Psychophysics and electrophysiology,” Science 194, 1077–1079 (1976).
[Crossref] [PubMed]

D. H. Kelly, “Luminous and chromatic flickering patterns hav opposite effects,” Science 188, 371–372 (1975).
[Crossref] [PubMed]

D. H. Kelly, “Spatio-temporal frequency characteristics of color-vision mechanisms,” J. Opt. Soc. Am. 64, 983–990 (1974).
[Crossref]

D. H. Kelly, “Diffusion model of linear flicker responses,” J. Opt. Soc. Am. 59, 1665–1670 (1969).
[Crossref] [PubMed]

Kingsbury, E. F.

H. E. Ives and E. F. Kingsbury, “The theory of the flicker photometer,” Philos. Mag. 28, 708–728 (1914).

Krill, A. E.

A. E. Krill, V. C. Smith, and J. Pokorny, “Further studies supporting the identity of congenital tritanopia and hereditary dominant optic atrophy,” Invest. Ophthalmol. 10, 457–465 (1917).

Leebeek, H. J.

P. L. Walraven, H. J. Leebeek, and M. A. Bouman, “Some measurements about the fusion frequency of colors,” Opt. Acta 5, 50–54 (1958).

Lewis, M. F.

Lodge, H.

Mahneke, A.

A. Mahneke, “Foveal discrimination measured with two successive light flashes,” Acta Ophthalmol. (Kbh.) 36, 3–11 (1958).
[Crossref]

Nissen, M. J.

M. J. Nissen and J. Pokorny, “Wavelength effects on simple reaction time” Percept. Psychophys. (in press).

Pokorny, J.

R. W. Bowen, J. Pokorny, and D. Cacciato, “Metacontrast masking depends on luminance transients,” Vision Res. 17, 971–975 (1977).
[Crossref] [PubMed]

V. C. Smith and J. Pokorny, “Autosomal dominant tritanopia, Invest. Ophthalmol. 13, 706–707 (1974).
[PubMed]

A. E. Krill, V. C. Smith, and J. Pokorny, “Further studies supporting the identity of congenital tritanopia and hereditary dominant optic atrophy,” Invest. Ophthalmol. 10, 457–465 (1917).

M. J. Nissen and J. Pokorny, “Wavelength effects on simple reaction time” Percept. Psychophys. (in press).

Regan, D.

D. Regan and C. W. Tyler, “A wavelength modulated light generator,” Vision Res. 11, 43–56 (1971).
[Crossref] [PubMed]

D. Regan and C. W. Tyler, “Some dynamic features of colour vision,” Vision Res. 11, 1307–1324 (1971).
[Crossref] [PubMed]

Rushton, W. A. H.

G. S. Brindley, J. J. Du Croz, and W. A. H. Rushton, “The flicker fusion frequency of the blue-sensitive mechanism in colour vision,” J. Physiol. 183, 497–500 (1966).

Smith, V. C.

V. C. Smith and J. Pokorny, “Autosomal dominant tritanopia, Invest. Ophthalmol. 13, 706–707 (1974).
[PubMed]

A. E. Krill, V. C. Smith, and J. Pokorny, “Further studies supporting the identity of congenital tritanopia and hereditary dominant optic atrophy,” Invest. Ophthalmol. 10, 457–465 (1917).

Troland, L. T.

L. T. Troland, “Report of the Committee on Colorimetry for 1920–1921,” J. Opt. Soc. Am. 6, 527–596 (1922).
[Crossref]

L. T. Troland, “Notes on flicker photometry: Flicker-photometry frequency as a function of light intensity,” J. Franklin Inst. 182, 261–263 (1916).
[Crossref]

Tyler, C. W.

D. Regan and C. W. Tyler, “Some dynamic features of colour vision,” Vision Res. 11, 1307–1324 (1971).
[Crossref] [PubMed]

D. Regan and C. W. Tyler, “A wavelength modulated light generator,” Vision Res. 11, 43–56 (1971).
[Crossref] [PubMed]

van der Horst, G. J. C.

Walraven, P. L.

P. L. Walraven, H. J. Leebeek, and M. A. Bouman, “Some measurements about the fusion frequency of colors,” Opt. Acta 5, 50–54 (1958).

Weingarten, F.

F. Weingarten, “Wavelength effect on visual latency,” Science 176, 692–694 (1972).
[Crossref] [PubMed]

Wright, W. D.

Acta Ophthalmol. (Kbh.) (1)

A. Mahneke, “Foveal discrimination measured with two successive light flashes,” Acta Ophthalmol. (Kbh.) 36, 3–11 (1958).
[Crossref]

Die Farbe. (1)

D. Farnsworth, “Tritanomalous vision as a threshold function,” Die Farbe. 4, 185–196 (1955).

Invest. Ophthalmol. (2)

A. E. Krill, V. C. Smith, and J. Pokorny, “Further studies supporting the identity of congenital tritanopia and hereditary dominant optic atrophy,” Invest. Ophthalmol. 10, 457–465 (1917).

V. C. Smith and J. Pokorny, “Autosomal dominant tritanopia, Invest. Ophthalmol. 13, 706–707 (1974).
[PubMed]

J. Franklin Inst. (1)

L. T. Troland, “Notes on flicker photometry: Flicker-photometry frequency as a function of light intensity,” J. Franklin Inst. 182, 261–263 (1916).
[Crossref]

J. Opt. Soc. Am. (10)

J. Physiol. (1)

G. S. Brindley, J. J. Du Croz, and W. A. H. Rushton, “The flicker fusion frequency of the blue-sensitive mechanism in colour vision,” J. Physiol. 183, 497–500 (1966).

Opt. Acta (1)

P. L. Walraven, H. J. Leebeek, and M. A. Bouman, “Some measurements about the fusion frequency of colors,” Opt. Acta 5, 50–54 (1958).

Philos. Mag. (2)

H. E. Ives and E. F. Kingsbury, “The theory of the flicker photometer,” Philos. Mag. 28, 708–728 (1914).

H. E. Ives, “A polarization flicker photometer and some data of theoretical bearing obtained with it,” Philos. Mag. 33, 360–380 (1917).

Science (3)

D. H. Kelly, “Luminous and chromatic flickering patterns hav opposite effects,” Science 188, 371–372 (1975).
[Crossref] [PubMed]

F. Weingarten, “Wavelength effect on visual latency,” Science 176, 692–694 (1972).
[Crossref] [PubMed]

D. H. Kelly, R. M. Boynton, and W. S. Baron, “Primate flicker sensitivity: Psychophysics and electrophysiology,” Science 194, 1077–1079 (1976).
[Crossref] [PubMed]

Vision Res. (5)

D. G. Green, “Sinusoidal flicker characteristics of the color-sensitive mechanisms of the eye,” Vision Res. 9, 591–601 (1969).
[Crossref] [PubMed]

M. E. Breton, “Hue substitution: Wavelength latency effects,” Vision Res. 17, 435–443 (1977).
[Crossref] [PubMed]

D. Regan and C. W. Tyler, “A wavelength modulated light generator,” Vision Res. 11, 43–56 (1971).
[Crossref] [PubMed]

D. Regan and C. W. Tyler, “Some dynamic features of colour vision,” Vision Res. 11, 1307–1324 (1971).
[Crossref] [PubMed]

R. W. Bowen, J. Pokorny, and D. Cacciato, “Metacontrast masking depends on luminance transients,” Vision Res. 17, 971–975 (1977).
[Crossref] [PubMed]

Other (3)

R. M. Boynton, “Discrimination of homogeneous double pulses of light,” in Visual Psychophysics, Vol. VII/4, Handbook of Sensory Physiology, edited by D. Jameson and L. Hurvich (Springer-Verlag, Berlin, 1972), Chap. 9.
[Crossref]

M. J. Nissen and J. Pokorny, “Wavelength effects on simple reaction time” Percept. Psychophys. (in press).

L. Hurvich, “Color vision deficiencies,” in Visual Psychophysics, Vol. VII/4, Handbook of Sensory Physiology, edited by D. Jameson and L. Hurvich (Springer-Verlag, Berlin, 1972), Chap. 23.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

FIG. 1
FIG. 1

(a) The stimulus array. (b) Luminance cross sections of the stimulus array during pulse presentation for the three conditions studied in Experiment 1: luminance increment pulses, luminance decrement pulses, and hue substitution pulses. Stippling indicates the amount of chromatic light present in a pulse.

FIG. 2
FIG. 2

Threshold interpulse interval as a function of wavelength for increment (circles), decrement (squares), and hue substitution (triangles) conditions for the two observers. Pulses were 65 ms in duration.

FIG. 3
FIG. 3

Threshold interpulse interval as a function of background luminance for 504 nm (filled triangles) and 620 nm (open triangles) pulses presented in hue substitution. Inverted triangles are data from Experiment 1.

FIG. 4
FIG. 4

Threshold interpulse interval as a function of pulse luminance for 555 nm (filled circles) and 620 nm (open circles) increment pulses. Pulses were 65 ms in duration presented against a background of 0. 175 cd/m2.

FIG. 5
FIG. 5

Threshold interpulse interval as a function of wavelength for 100 ms pulses (filled triangles) and 65 ms pulses (open triangles: data replotted from Fig. 2) presented in hue substitution at 1. 4 cd/m2.

FIG. 6
FIG. 6

Threshold interpulse interval as a function of pulse duration for 463 nm (filled triangles) and 620 nm (open triangles) pulses presented in hue substitution at 1. 4 cd/m2. Data for 65 and 100 ms pulses are replotted from Fig. 5.