Abstract

The hypothesis that rods contribute to color information has not been generally accepted primarily because of the apparent lack of a connection between the scotopic luminosity function and color-mixture data. We present analyses showing that the scotopic luminosity function is intimately related to color data over the entire spectrum indicating that rods play a central role in normal color vision. These results, not readily explainable in terms of the trichromatic theory, suggest an alternate idea of sensing in terms of the psychophysical quantities called brightness, hue, and saturation.

© 1977 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. N. Willmer, J. Theor. Biol. 1, 141–179 (1961).
    [Crossref] [PubMed]
  2. Colour 73 (Wiley, New York, 1973)(Survey Lectures and abstracts of the papers presented at the Second Congress of the International Color Association, University of New York, 2–6 July 1973).
  3. P. W. Trezona, Vis. Res. 10, 317–332 (1970).
    [Crossref]
  4. U. Stabell and B. Stabell, Scand. J. Psychol. 6, 195–200 (1965).
    [Crossref]
  5. J. McCann and J. Benton, J. Opt. Soc. Am. 59, 103–107 (1969).
    [Crossref] [PubMed]
  6. U. Stabell and B. Stabell, Vis. Res. 15, 1119–1123 (1975).
    [Crossref]
  7. H. B. Tilton, Inf. Display 3, 63 (Jan./Feb.1966).
  8. L. A. Riggs, Invest. Opthalmol. 6, 6–17 (1967).
  9. H. Laurens and W. F. Hamilton, Am. J. Physiol. 65, 547–568 (1923).
  10. W. D. Wright and F. H. G. Pitt, Proc. Phys. Soc. Lond. 46, 459–473 (1934).
    [Crossref]
  11. R. E. Bedford and G. W. Wyszecki, J. Opt. Soc. Am. 48, 129–135 (1958).
    [Crossref] [PubMed]
  12. D. B. Judd, J. Opt. Soc. Am. 22, 72–108 (1932).
    [Crossref]
  13. U. Stabell and B. Stabell, Vis. Res. 15, 1115–1118 (1975).
    [Crossref]
  14. B. Stabell and U. Stabell, Vis. Res. 13, 449–455 (1973).
    [Crossref]
  15. G. S. Brindley, J. Physiol. 130, 35–44 (1955).

1975 (2)

U. Stabell and B. Stabell, Vis. Res. 15, 1119–1123 (1975).
[Crossref]

U. Stabell and B. Stabell, Vis. Res. 15, 1115–1118 (1975).
[Crossref]

1973 (1)

B. Stabell and U. Stabell, Vis. Res. 13, 449–455 (1973).
[Crossref]

1970 (1)

P. W. Trezona, Vis. Res. 10, 317–332 (1970).
[Crossref]

1969 (1)

1967 (1)

L. A. Riggs, Invest. Opthalmol. 6, 6–17 (1967).

1966 (1)

H. B. Tilton, Inf. Display 3, 63 (Jan./Feb.1966).

1965 (1)

U. Stabell and B. Stabell, Scand. J. Psychol. 6, 195–200 (1965).
[Crossref]

1961 (1)

E. N. Willmer, J. Theor. Biol. 1, 141–179 (1961).
[Crossref] [PubMed]

1958 (1)

1955 (1)

G. S. Brindley, J. Physiol. 130, 35–44 (1955).

1934 (1)

W. D. Wright and F. H. G. Pitt, Proc. Phys. Soc. Lond. 46, 459–473 (1934).
[Crossref]

1932 (1)

1923 (1)

H. Laurens and W. F. Hamilton, Am. J. Physiol. 65, 547–568 (1923).

Bedford, R. E.

Benton, J.

Brindley, G. S.

G. S. Brindley, J. Physiol. 130, 35–44 (1955).

Hamilton, W. F.

H. Laurens and W. F. Hamilton, Am. J. Physiol. 65, 547–568 (1923).

Judd, D. B.

Laurens, H.

H. Laurens and W. F. Hamilton, Am. J. Physiol. 65, 547–568 (1923).

McCann, J.

Pitt, F. H. G.

W. D. Wright and F. H. G. Pitt, Proc. Phys. Soc. Lond. 46, 459–473 (1934).
[Crossref]

Riggs, L. A.

L. A. Riggs, Invest. Opthalmol. 6, 6–17 (1967).

Stabell, B.

U. Stabell and B. Stabell, Vis. Res. 15, 1119–1123 (1975).
[Crossref]

U. Stabell and B. Stabell, Vis. Res. 15, 1115–1118 (1975).
[Crossref]

B. Stabell and U. Stabell, Vis. Res. 13, 449–455 (1973).
[Crossref]

U. Stabell and B. Stabell, Scand. J. Psychol. 6, 195–200 (1965).
[Crossref]

Stabell, U.

U. Stabell and B. Stabell, Vis. Res. 15, 1115–1118 (1975).
[Crossref]

U. Stabell and B. Stabell, Vis. Res. 15, 1119–1123 (1975).
[Crossref]

B. Stabell and U. Stabell, Vis. Res. 13, 449–455 (1973).
[Crossref]

U. Stabell and B. Stabell, Scand. J. Psychol. 6, 195–200 (1965).
[Crossref]

Tilton, H. B.

H. B. Tilton, Inf. Display 3, 63 (Jan./Feb.1966).

Trezona, P. W.

P. W. Trezona, Vis. Res. 10, 317–332 (1970).
[Crossref]

Willmer, E. N.

E. N. Willmer, J. Theor. Biol. 1, 141–179 (1961).
[Crossref] [PubMed]

Wright, W. D.

W. D. Wright and F. H. G. Pitt, Proc. Phys. Soc. Lond. 46, 459–473 (1934).
[Crossref]

Wyszecki, G. W.

Am. J. Physiol. (1)

H. Laurens and W. F. Hamilton, Am. J. Physiol. 65, 547–568 (1923).

Inf. Display (1)

H. B. Tilton, Inf. Display 3, 63 (Jan./Feb.1966).

Invest. Opthalmol. (1)

L. A. Riggs, Invest. Opthalmol. 6, 6–17 (1967).

J. Opt. Soc. Am. (3)

J. Physiol. (1)

G. S. Brindley, J. Physiol. 130, 35–44 (1955).

J. Theor. Biol. (1)

E. N. Willmer, J. Theor. Biol. 1, 141–179 (1961).
[Crossref] [PubMed]

Proc. Phys. Soc. Lond. (1)

W. D. Wright and F. H. G. Pitt, Proc. Phys. Soc. Lond. 46, 459–473 (1934).
[Crossref]

Scand. J. Psychol. (1)

U. Stabell and B. Stabell, Scand. J. Psychol. 6, 195–200 (1965).
[Crossref]

Vis. Res. (4)

P. W. Trezona, Vis. Res. 10, 317–332 (1970).
[Crossref]

U. Stabell and B. Stabell, Vis. Res. 15, 1119–1123 (1975).
[Crossref]

U. Stabell and B. Stabell, Vis. Res. 15, 1115–1118 (1975).
[Crossref]

B. Stabell and U. Stabell, Vis. Res. 13, 449–455 (1973).
[Crossref]

Other (1)

Colour 73 (Wiley, New York, 1973)(Survey Lectures and abstracts of the papers presented at the Second Congress of the International Color Association, University of New York, 2–6 July 1973).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

FIG. 1
FIG. 1

PCI function defined by Eq. (1). The numbers along the ordinate correspond to a value of zero for the constant of Eq. (1).

FIG. 2
FIG. 2

Block diagram illustrating one interpretation of PCI as defined by Eq. (1). The effective logarithmic conversion of receptor outputs is shown explicitly. Receptor spectral response functions for the cone and the rod are k 1 y ¯ and k2V′, respectively. The ∑ indicates that the signal output from the neuron is the algebraic sum of the inputs. The cone signal is assumed to be greater than the rod signal so that neuron output (PCI) is never negative.

FIG. 3
FIG. 3

(A). Some experimental hue discrimination curves adapted from the literature. (1) Curves for Laurens’s and Hamilton’s eyes representing average data from 16 tests. Adapted from Fig. 7 of Ref. 9. (2) Average curve for five normal observers. Adapted from Fig. 3 of Ref. 10. (3) Average data for Bedford’s eyes for 1° field. No special fixation point was presented. The observer was allowed to continuously scan the visual field. Adapted from Fig. 2 of Ref. 11. (4) Vertical bars within the envelopes represent the spread of data from eight different experiments. Adapted from Fig. 3 of Ref. 12. (B) Theoretical hue discrimination curve formed from the PCI function of Fig. 1. Compare this curve with those of Fig. 3(A). Note in particular the minima near 420, 500, and 620 nm; the maxima near 450 and 530 nm; and the approach to vertical asymptotes at 406 and 682 nm. Compare the slight indentation near 630 nm with those in the curves of Laurens and Hamilton near 600 nm.

FIG. 4
FIG. 4

CIE chromaticity locus (carets) and theoretical chromaticity locus (dots) defined by Eqs. (5). Wavelengths are given in nanometers. Note the agreement in the positions of wavelengths 565 nm and longer. The truncated theory as represented by Eqs. (5) does not apply to wavelengths shorter than 565 nm.

FIG. 5
FIG. 5

(A). Hue curve synthesized from Brindley isochrome data by the method described in the text. (B). PCI curve in the red end enlarged from Fig. 1. Note the qualitative agreement with Fig. 5(A). In particular note that both curves peak near 700 nm.

Tables (1)

Tables Icon

TABLE I Verbal and numerical designators for the hue sensation in the mid-photopic range (photopic hue), and their relation to effective wavelength for the CIE standard observer.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

PCI = log y ¯ log V + const = log y ¯ / V + const ,
x = A 1 u + B 1 υ + C 1 A 0 u + B 0 υ + C 0 , y = A 2 u + B 2 υ + C 2 A 0 u + B 0 υ + C 0 ,
x = x ¯ / w ¯ , y = y ¯ / w ¯ ,
u = y / y ¯ , υ = V / y ¯ ,
x = ( a 1 υ + b 1 ) / ( υ + b 0 ) , y = ( a 2 υ + b 2 ) / ( υ + b 0 ) .
PCI = log k 1 λ y ¯ ( λ ) L λ ( λ ) d λ k 2 λ V ( λ ) L λ ( λ ) d λ .
PCI = log k 1 λ y ¯ ( λ ) d L ( λ ) k 2 λ V ( λ ) d L ( λ ) .
PCI = log k 1 y ¯ ( λ e ) k 2 V ( λ e ) = log y ¯ ( λ e ) V ( λ e ) + log k 1 / k 2 ,