Abstract

The advantages of steady-state EP recording include (1) speed in assessing sensory function in normal and sick infants (e.g., in amblyopia) and in sick adults (e.g., in multiple sclerosis); (2) monitoring certain activities of sensory pathways that do not intrude into conscious perception; (3) rapidly assessing sensory function when a large number of subjects must be tested (e.g., in refraction); (4) objective measurement at very high suprathreshold levels where psychophysical methods are difficult or ineffective; (5) rapidly assessing sensory function in normal subjects when EP variability and nonstationarity preculde lengthy experiments; and (6) providing a speedy objective equivalent to behavioral test in animals.

© 1977 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. W. Campbell, L. Maffei, and M. Piccolino, “The contrast sensitivity of the cat,” J. Physiol. 229, 719–731 (1973).
  2. S. Bisti and L. Maffei, “Behavioural constrast sensivitity of cat in various visual meridians,” J. Physiol. 241, 201–210 (1974).
  3. D. Regan, N. A. M. Schellart, H. Spekreijse, and T. J. T. P. Van der Berg, “Photometry in goldfish by electrophysiological recording: comparison of criterion response method with heterochromatic flicker photometry,” Vision Res. 15, 799–807 (1975).
    [CrossRef] [PubMed]
  4. D. Regan and K. I. Beverley, “Electrophysiological evidence for the existence of neurons selectively sensitive to the direction of movement in depth,” Nature 246, 504–506 (1973).
    [CrossRef] [PubMed]
  5. K. I. Beverley and D. Regan, “Visual sensitivity to disparity pulses: evidence for directional sensitivity,” Vision Res. 14, 175–183 (1974).
    [CrossRef]
  6. S. M. Zeki, “Cells responding to changing image size and disparity in the cortex of rhesus monkey,” J. Physiol. 242, 827–841 (1974).
  7. M. Cynader and D. Regan, “Neurons in cat parastriate cortex sensitive to the direction of motion in three-dimensional space,” J. Physiol. (to be published).
  8. D. Regan, “Some characteristics of average steady-state and transient responses evoked by modulated light, ” Electroenceph. Clin. Neurophysiol. 20, 238–248 (1966).
    [CrossRef] [PubMed]
  9. D. Regan, Evoked Potentials in Psychology, Sensory Physiology and Clinical Medicine (Chapman and Hall, London, and Wiley, New York, 1972).
    [CrossRef]
  10. D. Regan, “Recent advances in electrical recording from the brain (Review),” Nature 253, 401–407 (1975).
    [CrossRef] [PubMed]
  11. L. H. Van der Tweel and H. F. E. Verduyn Lunel, “Human visual responses to sinusoidally modulated light,” Electroenceph. Clin. Neurophysiol. 18, 587–598 (1965).
    [CrossRef] [PubMed]
  12. D. Regan, “Chromatic adaptation and steady-state evoked potentials,” Vision Res. 8, 149–158 (1968).
    [CrossRef] [PubMed]
  13. D. Regan, “A high frequency mechanism that underlies visual evoked potentials,” Electroenceph. Clin. Neurophysiol. 25, 231–237 (1968).
    [CrossRef]
  14. H. Spekreijse, “Analysis of EEG responses in man,” Thesis, University of Amsterdam (Junk, The Hague, 1966).
  15. D. Regan, “Evoked potentials and sensation,” Percept. Psychophys. 4, 347–350 (1968).
    [CrossRef]
  16. D. Regan and K. I. Beverley, “Relation between the magnitude of flicker sensation and evoked potential amplitude in man,” Perception 2, 61–65 (1973).
    [CrossRef] [PubMed]
  17. B. A. Milner, D. Regan, and J. R. Heron, “Theoretical models of the generation of steady-state evoked potentials, their relation to neuroanatomy and their relevance to certain clinical problems,” Adv. Med. Biol. 24, 157–169 (1972).
    [CrossRef]
  18. B. A. Milner, D. Regan, and J. R. Heron, “Differential diagnosis of multiple sclerosis by visual evoked potential recording,” Brain 97, 755–772 (1974).
    [CrossRef] [PubMed]
  19. H. Spekreijse, L. H. Van der Tweel, and Th. Zuidma, “Contrast evoked responses in man,” Vision Res. 13, 1577–1601 (1973).
    [CrossRef] [PubMed]
  20. D. Regan and H. Sperling, “A method of evoking contourspecific scalp potentials by chromatic checkerboard patterns,” Vision Res. 11, 173–176 and 1203 (1971).
    [CrossRef] [PubMed]
  21. D. Regan and W. Richards, “Brightness contrast and evoked potentials,” J. Opt. Soc. Am. 63, 606–611 (1973).
    [CrossRef] [PubMed]
  22. D. Regan, cited p. 29 in S. Sokol, “Visually evoked potential: theory, techniques and clinical applications,” Survey Ophthal. 21, 18–44 (1976).
  23. D. Regan, “Assessment of visual acuity by evoked potential recording: possible ambiguity caused by temporal tuning,” Vision Res. (to be published).
  24. D. Regan, “Speedy assessment of visual acuity in amblyopia by evoked potential method,” Ophthalmologia 175, 159–164 (1977).
    [CrossRef]
  25. D. Regan, “Rapid methods for refracting the eye and for assessing visual acuity in amblyopia, using steady-state visual evoked potentials, ” in Visual Evoked Potentials in Man, edited by J. E. Desmedt (Clarendon, Oxford, 1977).
  26. D. Regan, “Objective method of measuring the relative spectral luminosity curve in man,” J. Opt. Soc. Am. 60, 856–859 (1970).
    [CrossRef]
  27. D. Regan, “Evoked potential and psychophysical correlates of changes in colour and intensity,” Vision Res. 9, 163–178 (1970).
    [CrossRef]
  28. D. Regan, “An electrophysiological correlate of colour: evoked response finding and single-cell speculations,” Vision Res. 13, 1933–1941 (1973).
    [CrossRef] [PubMed]
  29. D. Regan, “A study of the visual system by the correlation of light stimuli and evoked electrical responses,” Thesis, London University (1964).
  30. S. Duke-Elder, System Of Ophthalmology, Vol. 5 (Kimpton, London, 1970).
  31. D. Regan, “Rapid objective refraction using evoked brain potentials,” Invest. Ophthal. 12, 669–679 (1973).
    [PubMed]
  32. D. Regan, “Colour coding of pattern responses in man investigated by evoked potential feedback and direct plot techniques,” Vision Res. 15, 175–183 (1975).
    [CrossRef] [PubMed]
  33. H. Spekreijse, L. H. Khoe, and L. H. Van der Tweel, “A case of amblyopia: electrophysiology and psychophysics of luminance and contrast,” Adv. Exp. Med. Biol. 24, 141–144 (1972).
    [CrossRef]
  34. G. B. Arden, “The visual evoked response in ophthalmology,” Proc. R. Soc. Med. 66, 1037–1043 (1973).
  35. S. Sokol and B. Bloom, “Visually evoked cortical responses of amblyopes to a spatially alternating stimulus,” Invest. Ophthal. 12, 936–939 (1973).
    [PubMed]
  36. D. Regan and H. Sperling, “A method of evoking contourspecific scalp potentials by chromatic checkerboard patterns,” Vision Res. 11, 173–176 and 1302 (1971).
    [CrossRef] [PubMed]
  37. D. Regan, “Electrophysiological evidence for colour channels in human pattern vision,” Nature 250, 437–439 (1974).
    [CrossRef] [PubMed]
  38. R. J. Galvin, D. Regan, and J. R. Heron, “Altering body temperature changes visual perception of double light flashes in multiple sclerosis: a possible means of monitoring the progress of demyelination,” J. Neurol. Neurosurg. Psychiat. 39, 861–865 (1976).
    [CrossRef]
  39. D. Regan, T. J. Murray, and R. Silver, “Effect of body temperature on visual evoked potential delay in multiple sclerosis patients,” J. Neurol. Neurosurg. Psychiat. (to be published).
  40. J. R. Heron, D. Regan, and B. A. Milner, “Delay in visual perception in unilateral optic atrophy after retrobulbar neuritis,” Brain 97, 83–92 (1974).
    [CrossRef]
  41. (a)D. Regan, B. A. Milner, and J. R. Heron, “Delayed visual perception and delayed evoked potentials in the spinal form of multiple sclerosis and in retrobulbar neuritis,” Brain 99, 43–66 (1976).(b)A. M. Halliday, W. I. McDonald, and J. Mushin, ”Delayed visual responses in optic neuritis,” Lancet 1, 982–985 (1972).
  42. A. M. Halliday, M. I. McDonald, and J. Mushin, “Delayed pattern-evoked responses in optic neuritis in relation to visual acuity,” Trans. Ophthal. Soc. U. K. 93, 315–324 (1973).
  43. P. Assleman, D. W. Chadwick, and D. D. Marsden, “Visual evoked responses in the diagnosis and management of patients suspected of multiple sclerosis,” Brain 98, 261–282 (1975).
    [CrossRef]
  44. J. M. Cappin and S. Nissim, “Pattern visual evoked responses in the detection of field defects in glaucoma,” Archiv. Ophthal. N. Y. 93, 9–18 (1975).
    [CrossRef]
  45. W. I. McDonald, “Pathophysiology in multiple sclerosis,” Brain 97, 179–196 (1974).
    [CrossRef] [PubMed]
  46. M. Feinsod and W. F. Hoyt, “Subclinical optic neuropathy in multiple sclerosis,” J. Neurol. Neurosurg, Psychiat. 38, 1109–1114 (1975).
    [CrossRef]
  47. M. Feinsod, O. Abramsky, and E. Auerbach, “Electrophysiological examinations of the visual system in multiple sclerosis,” J. Neurol. Sci. 20, 161–175 (1973).
    [CrossRef] [PubMed]
  48. D. Regan, “Latencies of evoked potentials to flicker and to pattern speedily estimated by simultaneous stimulation method,” Electroenceph. Clin. Neurophysiol. 40, 654–660 (1976).
    [CrossRef]
  49. D. Regan and J. R. Heron, “Clinical investigation of lesions of the visual pathway: a new objective technique,” J. Neurol. Neurosurg. Psychiat. 32, 479–483 (1969).
  50. D. Regan and R. F. Cartwright, “A method of measuring the potentials evoked by simultaneous stimulation of the left and right half-fields,” Electroenceph. Clin. Neurophysiol. 28, 314–319 (1970) andElectroenceph. Clin. Neurophysiol. 36, 547–550 (1974).
    [CrossRef]
  51. D. Regan and J. R. Heron, “Simultaneous recording of visual evoked potentials from the left and right hemispheres in migraine,” in Background to Migraine (Heinemann, London, 1970), pp. 66–77.
  52. D. Regan and B. A. Milner, “Objective perimetry by evoked potential recording: limitations,” Electroenceph. Clin. Neurophysiol, in press.
  53. D. Regan, “Evoked potentials specific to spatial patterns of luminance and colour,” Vision Res. 13, 2381–2402 (1973).
    [CrossRef] [PubMed]
  54. A. M. Halliday and W. F. Michael, “Changes in pattern-evoked responses in man associated with the vertical and horizontal meridians of the visual field,” J. Physiol. 208, 499–513 (1970).
  55. D. A. Jeffreys and J. G. Axford, “Source location of patternspecific componenst of human visual evoked potentials I & II,” Exp. Brain Res. 16, 1–21 and22–40 (1972).
  56. W. F. Michael and A. M. Halliday, “Differences between the occipital distributions of upper and lower half-field pattern-evoked responses in man,” Brain Res. 32, 311–324 (1971).
    [CrossRef] [PubMed]
  57. D. Regan and H. Spekreijse, “Evoked potential indications of colourblindness,” Vision Res. 14, 89–95 (1974).
    [CrossRef] [PubMed]
  58. D. Regan, “Evoked potentials to changes in chromatic contrast,” Trace 6, 22–28 (1972).
  59. D. Regan, “Parallel and sequential processing of visual information in man: investigation by evoked potential recording, ” in Photophysiology, Vol. 8 (Academic, New York, 1973), pp. 185–208.
    [CrossRef]
  60. D. Regan, “Evoked potentials to changes in chromatic contrast,” Advances Med. Biol. 24, 171–187 (1972).
    [CrossRef]
  61. O. Estevez, H. Spekreijse, T. J. T. P. Van der Berg, and C. R. Cavonius, “The spectral sensitivities of isolated human colour mechanisms determined from contrast evoked potential measurements,” Vision Res. 15, 1205–1212 (1973).
    [CrossRef]
  62. B. Tansley and A. Valberg, “Chromatic border distinctness: hue and saturation,” J. Opt. Soc. Am. (to be published).
  63. H. Sperling and R. S. Harwerth, “Red-green cone interactions in the increment threshold spectral sensivity of primates,” Science 172, 180–184 (1971).
    [CrossRef] [PubMed]

1977 (1)

D. Regan, “Speedy assessment of visual acuity in amblyopia by evoked potential method,” Ophthalmologia 175, 159–164 (1977).
[CrossRef]

1976 (4)

D. Regan, cited p. 29 in S. Sokol, “Visually evoked potential: theory, techniques and clinical applications,” Survey Ophthal. 21, 18–44 (1976).

D. Regan, cited p. 29 in S. Sokol, “Visually evoked potential: theory, techniques and clinical applications,” Survey Ophthal. 21, 18–44 (1976).

R. J. Galvin, D. Regan, and J. R. Heron, “Altering body temperature changes visual perception of double light flashes in multiple sclerosis: a possible means of monitoring the progress of demyelination,” J. Neurol. Neurosurg. Psychiat. 39, 861–865 (1976).
[CrossRef]

(a)D. Regan, B. A. Milner, and J. R. Heron, “Delayed visual perception and delayed evoked potentials in the spinal form of multiple sclerosis and in retrobulbar neuritis,” Brain 99, 43–66 (1976).(b)A. M. Halliday, W. I. McDonald, and J. Mushin, ”Delayed visual responses in optic neuritis,” Lancet 1, 982–985 (1972).

D. Regan, “Latencies of evoked potentials to flicker and to pattern speedily estimated by simultaneous stimulation method,” Electroenceph. Clin. Neurophysiol. 40, 654–660 (1976).
[CrossRef]

1975 (6)

M. Feinsod and W. F. Hoyt, “Subclinical optic neuropathy in multiple sclerosis,” J. Neurol. Neurosurg, Psychiat. 38, 1109–1114 (1975).
[CrossRef]

P. Assleman, D. W. Chadwick, and D. D. Marsden, “Visual evoked responses in the diagnosis and management of patients suspected of multiple sclerosis,” Brain 98, 261–282 (1975).
[CrossRef]

J. M. Cappin and S. Nissim, “Pattern visual evoked responses in the detection of field defects in glaucoma,” Archiv. Ophthal. N. Y. 93, 9–18 (1975).
[CrossRef]

D. Regan, “Colour coding of pattern responses in man investigated by evoked potential feedback and direct plot techniques,” Vision Res. 15, 175–183 (1975).
[CrossRef] [PubMed]

D. Regan, N. A. M. Schellart, H. Spekreijse, and T. J. T. P. Van der Berg, “Photometry in goldfish by electrophysiological recording: comparison of criterion response method with heterochromatic flicker photometry,” Vision Res. 15, 799–807 (1975).
[CrossRef] [PubMed]

D. Regan, “Recent advances in electrical recording from the brain (Review),” Nature 253, 401–407 (1975).
[CrossRef] [PubMed]

1974 (8)

K. I. Beverley and D. Regan, “Visual sensitivity to disparity pulses: evidence for directional sensitivity,” Vision Res. 14, 175–183 (1974).
[CrossRef]

S. M. Zeki, “Cells responding to changing image size and disparity in the cortex of rhesus monkey,” J. Physiol. 242, 827–841 (1974).

S. Bisti and L. Maffei, “Behavioural constrast sensivitity of cat in various visual meridians,” J. Physiol. 241, 201–210 (1974).

B. A. Milner, D. Regan, and J. R. Heron, “Differential diagnosis of multiple sclerosis by visual evoked potential recording,” Brain 97, 755–772 (1974).
[CrossRef] [PubMed]

J. R. Heron, D. Regan, and B. A. Milner, “Delay in visual perception in unilateral optic atrophy after retrobulbar neuritis,” Brain 97, 83–92 (1974).
[CrossRef]

W. I. McDonald, “Pathophysiology in multiple sclerosis,” Brain 97, 179–196 (1974).
[CrossRef] [PubMed]

D. Regan, “Electrophysiological evidence for colour channels in human pattern vision,” Nature 250, 437–439 (1974).
[CrossRef] [PubMed]

D. Regan and H. Spekreijse, “Evoked potential indications of colourblindness,” Vision Res. 14, 89–95 (1974).
[CrossRef] [PubMed]

1973 (13)

D. Regan, “Evoked potentials specific to spatial patterns of luminance and colour,” Vision Res. 13, 2381–2402 (1973).
[CrossRef] [PubMed]

D. Regan and W. Richards, “Brightness contrast and evoked potentials,” J. Opt. Soc. Am. 63, 606–611 (1973).
[CrossRef] [PubMed]

O. Estevez, H. Spekreijse, T. J. T. P. Van der Berg, and C. R. Cavonius, “The spectral sensitivities of isolated human colour mechanisms determined from contrast evoked potential measurements,” Vision Res. 15, 1205–1212 (1973).
[CrossRef]

A. M. Halliday, M. I. McDonald, and J. Mushin, “Delayed pattern-evoked responses in optic neuritis in relation to visual acuity,” Trans. Ophthal. Soc. U. K. 93, 315–324 (1973).

M. Feinsod, O. Abramsky, and E. Auerbach, “Electrophysiological examinations of the visual system in multiple sclerosis,” J. Neurol. Sci. 20, 161–175 (1973).
[CrossRef] [PubMed]

G. B. Arden, “The visual evoked response in ophthalmology,” Proc. R. Soc. Med. 66, 1037–1043 (1973).

S. Sokol and B. Bloom, “Visually evoked cortical responses of amblyopes to a spatially alternating stimulus,” Invest. Ophthal. 12, 936–939 (1973).
[PubMed]

D. Regan, “An electrophysiological correlate of colour: evoked response finding and single-cell speculations,” Vision Res. 13, 1933–1941 (1973).
[CrossRef] [PubMed]

D. Regan, “Rapid objective refraction using evoked brain potentials,” Invest. Ophthal. 12, 669–679 (1973).
[PubMed]

H. Spekreijse, L. H. Van der Tweel, and Th. Zuidma, “Contrast evoked responses in man,” Vision Res. 13, 1577–1601 (1973).
[CrossRef] [PubMed]

D. Regan and K. I. Beverley, “Relation between the magnitude of flicker sensation and evoked potential amplitude in man,” Perception 2, 61–65 (1973).
[CrossRef] [PubMed]

F. W. Campbell, L. Maffei, and M. Piccolino, “The contrast sensitivity of the cat,” J. Physiol. 229, 719–731 (1973).

D. Regan and K. I. Beverley, “Electrophysiological evidence for the existence of neurons selectively sensitive to the direction of movement in depth,” Nature 246, 504–506 (1973).
[CrossRef] [PubMed]

1972 (5)

B. A. Milner, D. Regan, and J. R. Heron, “Theoretical models of the generation of steady-state evoked potentials, their relation to neuroanatomy and their relevance to certain clinical problems,” Adv. Med. Biol. 24, 157–169 (1972).
[CrossRef]

H. Spekreijse, L. H. Khoe, and L. H. Van der Tweel, “A case of amblyopia: electrophysiology and psychophysics of luminance and contrast,” Adv. Exp. Med. Biol. 24, 141–144 (1972).
[CrossRef]

D. Regan, “Evoked potentials to changes in chromatic contrast,” Trace 6, 22–28 (1972).

D. Regan, “Evoked potentials to changes in chromatic contrast,” Advances Med. Biol. 24, 171–187 (1972).
[CrossRef]

D. A. Jeffreys and J. G. Axford, “Source location of patternspecific componenst of human visual evoked potentials I & II,” Exp. Brain Res. 16, 1–21 and22–40 (1972).

1971 (4)

W. F. Michael and A. M. Halliday, “Differences between the occipital distributions of upper and lower half-field pattern-evoked responses in man,” Brain Res. 32, 311–324 (1971).
[CrossRef] [PubMed]

H. Sperling and R. S. Harwerth, “Red-green cone interactions in the increment threshold spectral sensivity of primates,” Science 172, 180–184 (1971).
[CrossRef] [PubMed]

D. Regan and H. Sperling, “A method of evoking contourspecific scalp potentials by chromatic checkerboard patterns,” Vision Res. 11, 173–176 and 1302 (1971).
[CrossRef] [PubMed]

D. Regan and H. Sperling, “A method of evoking contourspecific scalp potentials by chromatic checkerboard patterns,” Vision Res. 11, 173–176 and 1203 (1971).
[CrossRef] [PubMed]

1970 (4)

D. Regan, “Evoked potential and psychophysical correlates of changes in colour and intensity,” Vision Res. 9, 163–178 (1970).
[CrossRef]

D. Regan, “Objective method of measuring the relative spectral luminosity curve in man,” J. Opt. Soc. Am. 60, 856–859 (1970).
[CrossRef]

A. M. Halliday and W. F. Michael, “Changes in pattern-evoked responses in man associated with the vertical and horizontal meridians of the visual field,” J. Physiol. 208, 499–513 (1970).

D. Regan and R. F. Cartwright, “A method of measuring the potentials evoked by simultaneous stimulation of the left and right half-fields,” Electroenceph. Clin. Neurophysiol. 28, 314–319 (1970) andElectroenceph. Clin. Neurophysiol. 36, 547–550 (1974).
[CrossRef]

1969 (1)

D. Regan and J. R. Heron, “Clinical investigation of lesions of the visual pathway: a new objective technique,” J. Neurol. Neurosurg. Psychiat. 32, 479–483 (1969).

1968 (3)

D. Regan, “Chromatic adaptation and steady-state evoked potentials,” Vision Res. 8, 149–158 (1968).
[CrossRef] [PubMed]

D. Regan, “A high frequency mechanism that underlies visual evoked potentials,” Electroenceph. Clin. Neurophysiol. 25, 231–237 (1968).
[CrossRef]

D. Regan, “Evoked potentials and sensation,” Percept. Psychophys. 4, 347–350 (1968).
[CrossRef]

1966 (1)

D. Regan, “Some characteristics of average steady-state and transient responses evoked by modulated light, ” Electroenceph. Clin. Neurophysiol. 20, 238–248 (1966).
[CrossRef] [PubMed]

1965 (1)

L. H. Van der Tweel and H. F. E. Verduyn Lunel, “Human visual responses to sinusoidally modulated light,” Electroenceph. Clin. Neurophysiol. 18, 587–598 (1965).
[CrossRef] [PubMed]

Abramsky, O.

M. Feinsod, O. Abramsky, and E. Auerbach, “Electrophysiological examinations of the visual system in multiple sclerosis,” J. Neurol. Sci. 20, 161–175 (1973).
[CrossRef] [PubMed]

Arden, G. B.

G. B. Arden, “The visual evoked response in ophthalmology,” Proc. R. Soc. Med. 66, 1037–1043 (1973).

Assleman, P.

P. Assleman, D. W. Chadwick, and D. D. Marsden, “Visual evoked responses in the diagnosis and management of patients suspected of multiple sclerosis,” Brain 98, 261–282 (1975).
[CrossRef]

Auerbach, E.

M. Feinsod, O. Abramsky, and E. Auerbach, “Electrophysiological examinations of the visual system in multiple sclerosis,” J. Neurol. Sci. 20, 161–175 (1973).
[CrossRef] [PubMed]

Axford, J. G.

D. A. Jeffreys and J. G. Axford, “Source location of patternspecific componenst of human visual evoked potentials I & II,” Exp. Brain Res. 16, 1–21 and22–40 (1972).

Beverley, K. I.

K. I. Beverley and D. Regan, “Visual sensitivity to disparity pulses: evidence for directional sensitivity,” Vision Res. 14, 175–183 (1974).
[CrossRef]

D. Regan and K. I. Beverley, “Electrophysiological evidence for the existence of neurons selectively sensitive to the direction of movement in depth,” Nature 246, 504–506 (1973).
[CrossRef] [PubMed]

D. Regan and K. I. Beverley, “Relation between the magnitude of flicker sensation and evoked potential amplitude in man,” Perception 2, 61–65 (1973).
[CrossRef] [PubMed]

Bisti, S.

S. Bisti and L. Maffei, “Behavioural constrast sensivitity of cat in various visual meridians,” J. Physiol. 241, 201–210 (1974).

Bloom, B.

S. Sokol and B. Bloom, “Visually evoked cortical responses of amblyopes to a spatially alternating stimulus,” Invest. Ophthal. 12, 936–939 (1973).
[PubMed]

Campbell, F. W.

F. W. Campbell, L. Maffei, and M. Piccolino, “The contrast sensitivity of the cat,” J. Physiol. 229, 719–731 (1973).

Cappin, J. M.

J. M. Cappin and S. Nissim, “Pattern visual evoked responses in the detection of field defects in glaucoma,” Archiv. Ophthal. N. Y. 93, 9–18 (1975).
[CrossRef]

Cartwright, R. F.

D. Regan and R. F. Cartwright, “A method of measuring the potentials evoked by simultaneous stimulation of the left and right half-fields,” Electroenceph. Clin. Neurophysiol. 28, 314–319 (1970) andElectroenceph. Clin. Neurophysiol. 36, 547–550 (1974).
[CrossRef]

Cavonius, C. R.

O. Estevez, H. Spekreijse, T. J. T. P. Van der Berg, and C. R. Cavonius, “The spectral sensitivities of isolated human colour mechanisms determined from contrast evoked potential measurements,” Vision Res. 15, 1205–1212 (1973).
[CrossRef]

Chadwick, D. W.

P. Assleman, D. W. Chadwick, and D. D. Marsden, “Visual evoked responses in the diagnosis and management of patients suspected of multiple sclerosis,” Brain 98, 261–282 (1975).
[CrossRef]

Cynader, M.

M. Cynader and D. Regan, “Neurons in cat parastriate cortex sensitive to the direction of motion in three-dimensional space,” J. Physiol. (to be published).

Duke-Elder, S.

S. Duke-Elder, System Of Ophthalmology, Vol. 5 (Kimpton, London, 1970).

Estevez, O.

O. Estevez, H. Spekreijse, T. J. T. P. Van der Berg, and C. R. Cavonius, “The spectral sensitivities of isolated human colour mechanisms determined from contrast evoked potential measurements,” Vision Res. 15, 1205–1212 (1973).
[CrossRef]

Feinsod, M.

M. Feinsod and W. F. Hoyt, “Subclinical optic neuropathy in multiple sclerosis,” J. Neurol. Neurosurg, Psychiat. 38, 1109–1114 (1975).
[CrossRef]

M. Feinsod, O. Abramsky, and E. Auerbach, “Electrophysiological examinations of the visual system in multiple sclerosis,” J. Neurol. Sci. 20, 161–175 (1973).
[CrossRef] [PubMed]

Galvin, R. J.

R. J. Galvin, D. Regan, and J. R. Heron, “Altering body temperature changes visual perception of double light flashes in multiple sclerosis: a possible means of monitoring the progress of demyelination,” J. Neurol. Neurosurg. Psychiat. 39, 861–865 (1976).
[CrossRef]

Halliday, A. M.

A. M. Halliday, M. I. McDonald, and J. Mushin, “Delayed pattern-evoked responses in optic neuritis in relation to visual acuity,” Trans. Ophthal. Soc. U. K. 93, 315–324 (1973).

W. F. Michael and A. M. Halliday, “Differences between the occipital distributions of upper and lower half-field pattern-evoked responses in man,” Brain Res. 32, 311–324 (1971).
[CrossRef] [PubMed]

A. M. Halliday and W. F. Michael, “Changes in pattern-evoked responses in man associated with the vertical and horizontal meridians of the visual field,” J. Physiol. 208, 499–513 (1970).

Harwerth, R. S.

H. Sperling and R. S. Harwerth, “Red-green cone interactions in the increment threshold spectral sensivity of primates,” Science 172, 180–184 (1971).
[CrossRef] [PubMed]

Heron, J. R.

(a)D. Regan, B. A. Milner, and J. R. Heron, “Delayed visual perception and delayed evoked potentials in the spinal form of multiple sclerosis and in retrobulbar neuritis,” Brain 99, 43–66 (1976).(b)A. M. Halliday, W. I. McDonald, and J. Mushin, ”Delayed visual responses in optic neuritis,” Lancet 1, 982–985 (1972).

R. J. Galvin, D. Regan, and J. R. Heron, “Altering body temperature changes visual perception of double light flashes in multiple sclerosis: a possible means of monitoring the progress of demyelination,” J. Neurol. Neurosurg. Psychiat. 39, 861–865 (1976).
[CrossRef]

J. R. Heron, D. Regan, and B. A. Milner, “Delay in visual perception in unilateral optic atrophy after retrobulbar neuritis,” Brain 97, 83–92 (1974).
[CrossRef]

B. A. Milner, D. Regan, and J. R. Heron, “Differential diagnosis of multiple sclerosis by visual evoked potential recording,” Brain 97, 755–772 (1974).
[CrossRef] [PubMed]

B. A. Milner, D. Regan, and J. R. Heron, “Theoretical models of the generation of steady-state evoked potentials, their relation to neuroanatomy and their relevance to certain clinical problems,” Adv. Med. Biol. 24, 157–169 (1972).
[CrossRef]

D. Regan and J. R. Heron, “Clinical investigation of lesions of the visual pathway: a new objective technique,” J. Neurol. Neurosurg. Psychiat. 32, 479–483 (1969).

D. Regan and J. R. Heron, “Simultaneous recording of visual evoked potentials from the left and right hemispheres in migraine,” in Background to Migraine (Heinemann, London, 1970), pp. 66–77.

Hoyt, W. F.

M. Feinsod and W. F. Hoyt, “Subclinical optic neuropathy in multiple sclerosis,” J. Neurol. Neurosurg, Psychiat. 38, 1109–1114 (1975).
[CrossRef]

Jeffreys, D. A.

D. A. Jeffreys and J. G. Axford, “Source location of patternspecific componenst of human visual evoked potentials I & II,” Exp. Brain Res. 16, 1–21 and22–40 (1972).

Khoe, L. H.

H. Spekreijse, L. H. Khoe, and L. H. Van der Tweel, “A case of amblyopia: electrophysiology and psychophysics of luminance and contrast,” Adv. Exp. Med. Biol. 24, 141–144 (1972).
[CrossRef]

Maffei, L.

S. Bisti and L. Maffei, “Behavioural constrast sensivitity of cat in various visual meridians,” J. Physiol. 241, 201–210 (1974).

F. W. Campbell, L. Maffei, and M. Piccolino, “The contrast sensitivity of the cat,” J. Physiol. 229, 719–731 (1973).

Marsden, D. D.

P. Assleman, D. W. Chadwick, and D. D. Marsden, “Visual evoked responses in the diagnosis and management of patients suspected of multiple sclerosis,” Brain 98, 261–282 (1975).
[CrossRef]

McDonald, M. I.

A. M. Halliday, M. I. McDonald, and J. Mushin, “Delayed pattern-evoked responses in optic neuritis in relation to visual acuity,” Trans. Ophthal. Soc. U. K. 93, 315–324 (1973).

McDonald, W. I.

W. I. McDonald, “Pathophysiology in multiple sclerosis,” Brain 97, 179–196 (1974).
[CrossRef] [PubMed]

Michael, W. F.

W. F. Michael and A. M. Halliday, “Differences between the occipital distributions of upper and lower half-field pattern-evoked responses in man,” Brain Res. 32, 311–324 (1971).
[CrossRef] [PubMed]

A. M. Halliday and W. F. Michael, “Changes in pattern-evoked responses in man associated with the vertical and horizontal meridians of the visual field,” J. Physiol. 208, 499–513 (1970).

Milner, B. A.

(a)D. Regan, B. A. Milner, and J. R. Heron, “Delayed visual perception and delayed evoked potentials in the spinal form of multiple sclerosis and in retrobulbar neuritis,” Brain 99, 43–66 (1976).(b)A. M. Halliday, W. I. McDonald, and J. Mushin, ”Delayed visual responses in optic neuritis,” Lancet 1, 982–985 (1972).

J. R. Heron, D. Regan, and B. A. Milner, “Delay in visual perception in unilateral optic atrophy after retrobulbar neuritis,” Brain 97, 83–92 (1974).
[CrossRef]

B. A. Milner, D. Regan, and J. R. Heron, “Differential diagnosis of multiple sclerosis by visual evoked potential recording,” Brain 97, 755–772 (1974).
[CrossRef] [PubMed]

B. A. Milner, D. Regan, and J. R. Heron, “Theoretical models of the generation of steady-state evoked potentials, their relation to neuroanatomy and their relevance to certain clinical problems,” Adv. Med. Biol. 24, 157–169 (1972).
[CrossRef]

D. Regan and B. A. Milner, “Objective perimetry by evoked potential recording: limitations,” Electroenceph. Clin. Neurophysiol, in press.

Murray, T. J.

D. Regan, T. J. Murray, and R. Silver, “Effect of body temperature on visual evoked potential delay in multiple sclerosis patients,” J. Neurol. Neurosurg. Psychiat. (to be published).

Mushin, J.

A. M. Halliday, M. I. McDonald, and J. Mushin, “Delayed pattern-evoked responses in optic neuritis in relation to visual acuity,” Trans. Ophthal. Soc. U. K. 93, 315–324 (1973).

Nissim, S.

J. M. Cappin and S. Nissim, “Pattern visual evoked responses in the detection of field defects in glaucoma,” Archiv. Ophthal. N. Y. 93, 9–18 (1975).
[CrossRef]

Piccolino, M.

F. W. Campbell, L. Maffei, and M. Piccolino, “The contrast sensitivity of the cat,” J. Physiol. 229, 719–731 (1973).

Regan, D.

D. Regan, “Speedy assessment of visual acuity in amblyopia by evoked potential method,” Ophthalmologia 175, 159–164 (1977).
[CrossRef]

(a)D. Regan, B. A. Milner, and J. R. Heron, “Delayed visual perception and delayed evoked potentials in the spinal form of multiple sclerosis and in retrobulbar neuritis,” Brain 99, 43–66 (1976).(b)A. M. Halliday, W. I. McDonald, and J. Mushin, ”Delayed visual responses in optic neuritis,” Lancet 1, 982–985 (1972).

R. J. Galvin, D. Regan, and J. R. Heron, “Altering body temperature changes visual perception of double light flashes in multiple sclerosis: a possible means of monitoring the progress of demyelination,” J. Neurol. Neurosurg. Psychiat. 39, 861–865 (1976).
[CrossRef]

D. Regan, cited p. 29 in S. Sokol, “Visually evoked potential: theory, techniques and clinical applications,” Survey Ophthal. 21, 18–44 (1976).

D. Regan, “Latencies of evoked potentials to flicker and to pattern speedily estimated by simultaneous stimulation method,” Electroenceph. Clin. Neurophysiol. 40, 654–660 (1976).
[CrossRef]

D. Regan, “Colour coding of pattern responses in man investigated by evoked potential feedback and direct plot techniques,” Vision Res. 15, 175–183 (1975).
[CrossRef] [PubMed]

D. Regan, N. A. M. Schellart, H. Spekreijse, and T. J. T. P. Van der Berg, “Photometry in goldfish by electrophysiological recording: comparison of criterion response method with heterochromatic flicker photometry,” Vision Res. 15, 799–807 (1975).
[CrossRef] [PubMed]

D. Regan, “Recent advances in electrical recording from the brain (Review),” Nature 253, 401–407 (1975).
[CrossRef] [PubMed]

D. Regan and H. Spekreijse, “Evoked potential indications of colourblindness,” Vision Res. 14, 89–95 (1974).
[CrossRef] [PubMed]

K. I. Beverley and D. Regan, “Visual sensitivity to disparity pulses: evidence for directional sensitivity,” Vision Res. 14, 175–183 (1974).
[CrossRef]

J. R. Heron, D. Regan, and B. A. Milner, “Delay in visual perception in unilateral optic atrophy after retrobulbar neuritis,” Brain 97, 83–92 (1974).
[CrossRef]

B. A. Milner, D. Regan, and J. R. Heron, “Differential diagnosis of multiple sclerosis by visual evoked potential recording,” Brain 97, 755–772 (1974).
[CrossRef] [PubMed]

D. Regan, “Electrophysiological evidence for colour channels in human pattern vision,” Nature 250, 437–439 (1974).
[CrossRef] [PubMed]

D. Regan, “Rapid objective refraction using evoked brain potentials,” Invest. Ophthal. 12, 669–679 (1973).
[PubMed]

D. Regan and K. I. Beverley, “Relation between the magnitude of flicker sensation and evoked potential amplitude in man,” Perception 2, 61–65 (1973).
[CrossRef] [PubMed]

D. Regan and W. Richards, “Brightness contrast and evoked potentials,” J. Opt. Soc. Am. 63, 606–611 (1973).
[CrossRef] [PubMed]

D. Regan, “An electrophysiological correlate of colour: evoked response finding and single-cell speculations,” Vision Res. 13, 1933–1941 (1973).
[CrossRef] [PubMed]

D. Regan and K. I. Beverley, “Electrophysiological evidence for the existence of neurons selectively sensitive to the direction of movement in depth,” Nature 246, 504–506 (1973).
[CrossRef] [PubMed]

D. Regan, “Evoked potentials specific to spatial patterns of luminance and colour,” Vision Res. 13, 2381–2402 (1973).
[CrossRef] [PubMed]

D. Regan, “Evoked potentials to changes in chromatic contrast,” Trace 6, 22–28 (1972).

B. A. Milner, D. Regan, and J. R. Heron, “Theoretical models of the generation of steady-state evoked potentials, their relation to neuroanatomy and their relevance to certain clinical problems,” Adv. Med. Biol. 24, 157–169 (1972).
[CrossRef]

D. Regan, “Evoked potentials to changes in chromatic contrast,” Advances Med. Biol. 24, 171–187 (1972).
[CrossRef]

D. Regan and H. Sperling, “A method of evoking contourspecific scalp potentials by chromatic checkerboard patterns,” Vision Res. 11, 173–176 and 1302 (1971).
[CrossRef] [PubMed]

D. Regan and H. Sperling, “A method of evoking contourspecific scalp potentials by chromatic checkerboard patterns,” Vision Res. 11, 173–176 and 1203 (1971).
[CrossRef] [PubMed]

D. Regan, “Objective method of measuring the relative spectral luminosity curve in man,” J. Opt. Soc. Am. 60, 856–859 (1970).
[CrossRef]

D. Regan, “Evoked potential and psychophysical correlates of changes in colour and intensity,” Vision Res. 9, 163–178 (1970).
[CrossRef]

D. Regan and R. F. Cartwright, “A method of measuring the potentials evoked by simultaneous stimulation of the left and right half-fields,” Electroenceph. Clin. Neurophysiol. 28, 314–319 (1970) andElectroenceph. Clin. Neurophysiol. 36, 547–550 (1974).
[CrossRef]

D. Regan and J. R. Heron, “Clinical investigation of lesions of the visual pathway: a new objective technique,” J. Neurol. Neurosurg. Psychiat. 32, 479–483 (1969).

D. Regan, “Evoked potentials and sensation,” Percept. Psychophys. 4, 347–350 (1968).
[CrossRef]

D. Regan, “A high frequency mechanism that underlies visual evoked potentials,” Electroenceph. Clin. Neurophysiol. 25, 231–237 (1968).
[CrossRef]

D. Regan, “Chromatic adaptation and steady-state evoked potentials,” Vision Res. 8, 149–158 (1968).
[CrossRef] [PubMed]

D. Regan, “Some characteristics of average steady-state and transient responses evoked by modulated light, ” Electroenceph. Clin. Neurophysiol. 20, 238–248 (1966).
[CrossRef] [PubMed]

M. Cynader and D. Regan, “Neurons in cat parastriate cortex sensitive to the direction of motion in three-dimensional space,” J. Physiol. (to be published).

D. Regan and B. A. Milner, “Objective perimetry by evoked potential recording: limitations,” Electroenceph. Clin. Neurophysiol, in press.

D. Regan, “A study of the visual system by the correlation of light stimuli and evoked electrical responses,” Thesis, London University (1964).

D. Regan, “Parallel and sequential processing of visual information in man: investigation by evoked potential recording, ” in Photophysiology, Vol. 8 (Academic, New York, 1973), pp. 185–208.
[CrossRef]

D. Regan, “Assessment of visual acuity by evoked potential recording: possible ambiguity caused by temporal tuning,” Vision Res. (to be published).

D. Regan and J. R. Heron, “Simultaneous recording of visual evoked potentials from the left and right hemispheres in migraine,” in Background to Migraine (Heinemann, London, 1970), pp. 66–77.

D. Regan, Evoked Potentials in Psychology, Sensory Physiology and Clinical Medicine (Chapman and Hall, London, and Wiley, New York, 1972).
[CrossRef]

D. Regan, “Rapid methods for refracting the eye and for assessing visual acuity in amblyopia, using steady-state visual evoked potentials, ” in Visual Evoked Potentials in Man, edited by J. E. Desmedt (Clarendon, Oxford, 1977).

D. Regan, T. J. Murray, and R. Silver, “Effect of body temperature on visual evoked potential delay in multiple sclerosis patients,” J. Neurol. Neurosurg. Psychiat. (to be published).

Richards, W.

Schellart, N. A. M.

D. Regan, N. A. M. Schellart, H. Spekreijse, and T. J. T. P. Van der Berg, “Photometry in goldfish by electrophysiological recording: comparison of criterion response method with heterochromatic flicker photometry,” Vision Res. 15, 799–807 (1975).
[CrossRef] [PubMed]

Silver, R.

D. Regan, T. J. Murray, and R. Silver, “Effect of body temperature on visual evoked potential delay in multiple sclerosis patients,” J. Neurol. Neurosurg. Psychiat. (to be published).

Sokol, S.

D. Regan, cited p. 29 in S. Sokol, “Visually evoked potential: theory, techniques and clinical applications,” Survey Ophthal. 21, 18–44 (1976).

S. Sokol and B. Bloom, “Visually evoked cortical responses of amblyopes to a spatially alternating stimulus,” Invest. Ophthal. 12, 936–939 (1973).
[PubMed]

Spekreijse, H.

D. Regan, N. A. M. Schellart, H. Spekreijse, and T. J. T. P. Van der Berg, “Photometry in goldfish by electrophysiological recording: comparison of criterion response method with heterochromatic flicker photometry,” Vision Res. 15, 799–807 (1975).
[CrossRef] [PubMed]

D. Regan and H. Spekreijse, “Evoked potential indications of colourblindness,” Vision Res. 14, 89–95 (1974).
[CrossRef] [PubMed]

O. Estevez, H. Spekreijse, T. J. T. P. Van der Berg, and C. R. Cavonius, “The spectral sensitivities of isolated human colour mechanisms determined from contrast evoked potential measurements,” Vision Res. 15, 1205–1212 (1973).
[CrossRef]

H. Spekreijse, L. H. Van der Tweel, and Th. Zuidma, “Contrast evoked responses in man,” Vision Res. 13, 1577–1601 (1973).
[CrossRef] [PubMed]

H. Spekreijse, L. H. Khoe, and L. H. Van der Tweel, “A case of amblyopia: electrophysiology and psychophysics of luminance and contrast,” Adv. Exp. Med. Biol. 24, 141–144 (1972).
[CrossRef]

H. Spekreijse, “Analysis of EEG responses in man,” Thesis, University of Amsterdam (Junk, The Hague, 1966).

Sperling, H.

D. Regan and H. Sperling, “A method of evoking contourspecific scalp potentials by chromatic checkerboard patterns,” Vision Res. 11, 173–176 and 1203 (1971).
[CrossRef] [PubMed]

H. Sperling and R. S. Harwerth, “Red-green cone interactions in the increment threshold spectral sensivity of primates,” Science 172, 180–184 (1971).
[CrossRef] [PubMed]

D. Regan and H. Sperling, “A method of evoking contourspecific scalp potentials by chromatic checkerboard patterns,” Vision Res. 11, 173–176 and 1302 (1971).
[CrossRef] [PubMed]

Tansley, B.

B. Tansley and A. Valberg, “Chromatic border distinctness: hue and saturation,” J. Opt. Soc. Am. (to be published).

Valberg, A.

B. Tansley and A. Valberg, “Chromatic border distinctness: hue and saturation,” J. Opt. Soc. Am. (to be published).

Van der Berg, T. J. T. P.

D. Regan, N. A. M. Schellart, H. Spekreijse, and T. J. T. P. Van der Berg, “Photometry in goldfish by electrophysiological recording: comparison of criterion response method with heterochromatic flicker photometry,” Vision Res. 15, 799–807 (1975).
[CrossRef] [PubMed]

O. Estevez, H. Spekreijse, T. J. T. P. Van der Berg, and C. R. Cavonius, “The spectral sensitivities of isolated human colour mechanisms determined from contrast evoked potential measurements,” Vision Res. 15, 1205–1212 (1973).
[CrossRef]

Van der Tweel, L. H.

H. Spekreijse, L. H. Van der Tweel, and Th. Zuidma, “Contrast evoked responses in man,” Vision Res. 13, 1577–1601 (1973).
[CrossRef] [PubMed]

H. Spekreijse, L. H. Khoe, and L. H. Van der Tweel, “A case of amblyopia: electrophysiology and psychophysics of luminance and contrast,” Adv. Exp. Med. Biol. 24, 141–144 (1972).
[CrossRef]

L. H. Van der Tweel and H. F. E. Verduyn Lunel, “Human visual responses to sinusoidally modulated light,” Electroenceph. Clin. Neurophysiol. 18, 587–598 (1965).
[CrossRef] [PubMed]

Verduyn Lunel, H. F. E.

L. H. Van der Tweel and H. F. E. Verduyn Lunel, “Human visual responses to sinusoidally modulated light,” Electroenceph. Clin. Neurophysiol. 18, 587–598 (1965).
[CrossRef] [PubMed]

Zeki, S. M.

S. M. Zeki, “Cells responding to changing image size and disparity in the cortex of rhesus monkey,” J. Physiol. 242, 827–841 (1974).

Zuidma, Th.

H. Spekreijse, L. H. Van der Tweel, and Th. Zuidma, “Contrast evoked responses in man,” Vision Res. 13, 1577–1601 (1973).
[CrossRef] [PubMed]

Adv. Exp. Med. Biol. (1)

H. Spekreijse, L. H. Khoe, and L. H. Van der Tweel, “A case of amblyopia: electrophysiology and psychophysics of luminance and contrast,” Adv. Exp. Med. Biol. 24, 141–144 (1972).
[CrossRef]

Adv. Med. Biol. (1)

B. A. Milner, D. Regan, and J. R. Heron, “Theoretical models of the generation of steady-state evoked potentials, their relation to neuroanatomy and their relevance to certain clinical problems,” Adv. Med. Biol. 24, 157–169 (1972).
[CrossRef]

Advances Med. Biol. (1)

D. Regan, “Evoked potentials to changes in chromatic contrast,” Advances Med. Biol. 24, 171–187 (1972).
[CrossRef]

Archiv. Ophthal. N. Y. (1)

J. M. Cappin and S. Nissim, “Pattern visual evoked responses in the detection of field defects in glaucoma,” Archiv. Ophthal. N. Y. 93, 9–18 (1975).
[CrossRef]

Brain (5)

W. I. McDonald, “Pathophysiology in multiple sclerosis,” Brain 97, 179–196 (1974).
[CrossRef] [PubMed]

J. R. Heron, D. Regan, and B. A. Milner, “Delay in visual perception in unilateral optic atrophy after retrobulbar neuritis,” Brain 97, 83–92 (1974).
[CrossRef]

(a)D. Regan, B. A. Milner, and J. R. Heron, “Delayed visual perception and delayed evoked potentials in the spinal form of multiple sclerosis and in retrobulbar neuritis,” Brain 99, 43–66 (1976).(b)A. M. Halliday, W. I. McDonald, and J. Mushin, ”Delayed visual responses in optic neuritis,” Lancet 1, 982–985 (1972).

P. Assleman, D. W. Chadwick, and D. D. Marsden, “Visual evoked responses in the diagnosis and management of patients suspected of multiple sclerosis,” Brain 98, 261–282 (1975).
[CrossRef]

B. A. Milner, D. Regan, and J. R. Heron, “Differential diagnosis of multiple sclerosis by visual evoked potential recording,” Brain 97, 755–772 (1974).
[CrossRef] [PubMed]

Brain Res. (1)

W. F. Michael and A. M. Halliday, “Differences between the occipital distributions of upper and lower half-field pattern-evoked responses in man,” Brain Res. 32, 311–324 (1971).
[CrossRef] [PubMed]

Electroenceph. Clin. Neurophysiol. (5)

D. Regan, “Latencies of evoked potentials to flicker and to pattern speedily estimated by simultaneous stimulation method,” Electroenceph. Clin. Neurophysiol. 40, 654–660 (1976).
[CrossRef]

D. Regan and R. F. Cartwright, “A method of measuring the potentials evoked by simultaneous stimulation of the left and right half-fields,” Electroenceph. Clin. Neurophysiol. 28, 314–319 (1970) andElectroenceph. Clin. Neurophysiol. 36, 547–550 (1974).
[CrossRef]

D. Regan, “Some characteristics of average steady-state and transient responses evoked by modulated light, ” Electroenceph. Clin. Neurophysiol. 20, 238–248 (1966).
[CrossRef] [PubMed]

L. H. Van der Tweel and H. F. E. Verduyn Lunel, “Human visual responses to sinusoidally modulated light,” Electroenceph. Clin. Neurophysiol. 18, 587–598 (1965).
[CrossRef] [PubMed]

D. Regan, “A high frequency mechanism that underlies visual evoked potentials,” Electroenceph. Clin. Neurophysiol. 25, 231–237 (1968).
[CrossRef]

Exp. Brain Res. (1)

D. A. Jeffreys and J. G. Axford, “Source location of patternspecific componenst of human visual evoked potentials I & II,” Exp. Brain Res. 16, 1–21 and22–40 (1972).

Invest. Ophthal. (2)

S. Sokol and B. Bloom, “Visually evoked cortical responses of amblyopes to a spatially alternating stimulus,” Invest. Ophthal. 12, 936–939 (1973).
[PubMed]

D. Regan, “Rapid objective refraction using evoked brain potentials,” Invest. Ophthal. 12, 669–679 (1973).
[PubMed]

J. Neurol. Neurosurg, Psychiat. (1)

M. Feinsod and W. F. Hoyt, “Subclinical optic neuropathy in multiple sclerosis,” J. Neurol. Neurosurg, Psychiat. 38, 1109–1114 (1975).
[CrossRef]

J. Neurol. Neurosurg. Psychiat. (2)

D. Regan and J. R. Heron, “Clinical investigation of lesions of the visual pathway: a new objective technique,” J. Neurol. Neurosurg. Psychiat. 32, 479–483 (1969).

R. J. Galvin, D. Regan, and J. R. Heron, “Altering body temperature changes visual perception of double light flashes in multiple sclerosis: a possible means of monitoring the progress of demyelination,” J. Neurol. Neurosurg. Psychiat. 39, 861–865 (1976).
[CrossRef]

J. Neurol. Sci. (1)

M. Feinsod, O. Abramsky, and E. Auerbach, “Electrophysiological examinations of the visual system in multiple sclerosis,” J. Neurol. Sci. 20, 161–175 (1973).
[CrossRef] [PubMed]

J. Opt. Soc. Am. (2)

J. Physiol. (4)

F. W. Campbell, L. Maffei, and M. Piccolino, “The contrast sensitivity of the cat,” J. Physiol. 229, 719–731 (1973).

S. Bisti and L. Maffei, “Behavioural constrast sensivitity of cat in various visual meridians,” J. Physiol. 241, 201–210 (1974).

S. M. Zeki, “Cells responding to changing image size and disparity in the cortex of rhesus monkey,” J. Physiol. 242, 827–841 (1974).

A. M. Halliday and W. F. Michael, “Changes in pattern-evoked responses in man associated with the vertical and horizontal meridians of the visual field,” J. Physiol. 208, 499–513 (1970).

Nature (3)

D. Regan, “Electrophysiological evidence for colour channels in human pattern vision,” Nature 250, 437–439 (1974).
[CrossRef] [PubMed]

D. Regan and K. I. Beverley, “Electrophysiological evidence for the existence of neurons selectively sensitive to the direction of movement in depth,” Nature 246, 504–506 (1973).
[CrossRef] [PubMed]

D. Regan, “Recent advances in electrical recording from the brain (Review),” Nature 253, 401–407 (1975).
[CrossRef] [PubMed]

Ophthalmologia (1)

D. Regan, “Speedy assessment of visual acuity in amblyopia by evoked potential method,” Ophthalmologia 175, 159–164 (1977).
[CrossRef]

Percept. Psychophys. (1)

D. Regan, “Evoked potentials and sensation,” Percept. Psychophys. 4, 347–350 (1968).
[CrossRef]

Perception (1)

D. Regan and K. I. Beverley, “Relation between the magnitude of flicker sensation and evoked potential amplitude in man,” Perception 2, 61–65 (1973).
[CrossRef] [PubMed]

Proc. R. Soc. Med. (1)

G. B. Arden, “The visual evoked response in ophthalmology,” Proc. R. Soc. Med. 66, 1037–1043 (1973).

Science (1)

H. Sperling and R. S. Harwerth, “Red-green cone interactions in the increment threshold spectral sensivity of primates,” Science 172, 180–184 (1971).
[CrossRef] [PubMed]

Survey Ophthal. (1)

D. Regan, cited p. 29 in S. Sokol, “Visually evoked potential: theory, techniques and clinical applications,” Survey Ophthal. 21, 18–44 (1976).

Trace (1)

D. Regan, “Evoked potentials to changes in chromatic contrast,” Trace 6, 22–28 (1972).

Trans. Ophthal. Soc. U. K. (1)

A. M. Halliday, M. I. McDonald, and J. Mushin, “Delayed pattern-evoked responses in optic neuritis in relation to visual acuity,” Trans. Ophthal. Soc. U. K. 93, 315–324 (1973).

Vision Res. (12)

D. Regan and H. Sperling, “A method of evoking contourspecific scalp potentials by chromatic checkerboard patterns,” Vision Res. 11, 173–176 and 1302 (1971).
[CrossRef] [PubMed]

D. Regan, “Colour coding of pattern responses in man investigated by evoked potential feedback and direct plot techniques,” Vision Res. 15, 175–183 (1975).
[CrossRef] [PubMed]

D. Regan, “Evoked potential and psychophysical correlates of changes in colour and intensity,” Vision Res. 9, 163–178 (1970).
[CrossRef]

D. Regan, “An electrophysiological correlate of colour: evoked response finding and single-cell speculations,” Vision Res. 13, 1933–1941 (1973).
[CrossRef] [PubMed]

O. Estevez, H. Spekreijse, T. J. T. P. Van der Berg, and C. R. Cavonius, “The spectral sensitivities of isolated human colour mechanisms determined from contrast evoked potential measurements,” Vision Res. 15, 1205–1212 (1973).
[CrossRef]

D. Regan, “Evoked potentials specific to spatial patterns of luminance and colour,” Vision Res. 13, 2381–2402 (1973).
[CrossRef] [PubMed]

D. Regan and H. Spekreijse, “Evoked potential indications of colourblindness,” Vision Res. 14, 89–95 (1974).
[CrossRef] [PubMed]

H. Spekreijse, L. H. Van der Tweel, and Th. Zuidma, “Contrast evoked responses in man,” Vision Res. 13, 1577–1601 (1973).
[CrossRef] [PubMed]

D. Regan and H. Sperling, “A method of evoking contourspecific scalp potentials by chromatic checkerboard patterns,” Vision Res. 11, 173–176 and 1203 (1971).
[CrossRef] [PubMed]

D. Regan, N. A. M. Schellart, H. Spekreijse, and T. J. T. P. Van der Berg, “Photometry in goldfish by electrophysiological recording: comparison of criterion response method with heterochromatic flicker photometry,” Vision Res. 15, 799–807 (1975).
[CrossRef] [PubMed]

K. I. Beverley and D. Regan, “Visual sensitivity to disparity pulses: evidence for directional sensitivity,” Vision Res. 14, 175–183 (1974).
[CrossRef]

D. Regan, “Chromatic adaptation and steady-state evoked potentials,” Vision Res. 8, 149–158 (1968).
[CrossRef] [PubMed]

Other (12)

D. Regan, Evoked Potentials in Psychology, Sensory Physiology and Clinical Medicine (Chapman and Hall, London, and Wiley, New York, 1972).
[CrossRef]

H. Spekreijse, “Analysis of EEG responses in man,” Thesis, University of Amsterdam (Junk, The Hague, 1966).

M. Cynader and D. Regan, “Neurons in cat parastriate cortex sensitive to the direction of motion in three-dimensional space,” J. Physiol. (to be published).

D. Regan, “Assessment of visual acuity by evoked potential recording: possible ambiguity caused by temporal tuning,” Vision Res. (to be published).

D. Regan, “Rapid methods for refracting the eye and for assessing visual acuity in amblyopia, using steady-state visual evoked potentials, ” in Visual Evoked Potentials in Man, edited by J. E. Desmedt (Clarendon, Oxford, 1977).

B. Tansley and A. Valberg, “Chromatic border distinctness: hue and saturation,” J. Opt. Soc. Am. (to be published).

D. Regan, “Parallel and sequential processing of visual information in man: investigation by evoked potential recording, ” in Photophysiology, Vol. 8 (Academic, New York, 1973), pp. 185–208.
[CrossRef]

D. Regan and J. R. Heron, “Simultaneous recording of visual evoked potentials from the left and right hemispheres in migraine,” in Background to Migraine (Heinemann, London, 1970), pp. 66–77.

D. Regan and B. A. Milner, “Objective perimetry by evoked potential recording: limitations,” Electroenceph. Clin. Neurophysiol, in press.

D. Regan, “A study of the visual system by the correlation of light stimuli and evoked electrical responses,” Thesis, London University (1964).

S. Duke-Elder, System Of Ophthalmology, Vol. 5 (Kimpton, London, 1970).

D. Regan, T. J. Murray, and R. Silver, “Effect of body temperature on visual evoked potential delay in multiple sclerosis patients,” J. Neurol. Neurosurg. Psychiat. (to be published).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (25)

FIG. 1
FIG. 1

(a) The range of frequencies that pass through an analog Fourier analyzer centered on 6. 00 Hz for a 1-min recording (from Ref. 9). (b) Continuous line shows how EEG amplitude is distributed, with maximum activity at the alpha frequency (near 10 Hz). The vertical line represents the narrow range of frequencies passing through the Fourier analysis, illustrating a 100 db attenuation within 1 20 cycle (from Ref. 9).

FIG. 2
FIG. 2

Averaged and Fourier analyzed EPs. A. A digital computer integrated the EP over a 50 ms period centered on 90 ms latency. A running average was formed of the block of 16 successive responses. B. Output of Fourier analyzer. Stimulus same as in A. A checkerboard made six reversals per sec and the analyzer was locked to 6 Hz. The moment-to-moment variations appear to be less than in A. (From Ref. 9.)

FIG. 3
FIG. 3

Effects of stimulus frequency upon flicker EPs and pattern EPs. Continuous lines plot EP amplitude versus flicker frequency, showing “low-frequency,” “medium-frequency,” and “high-frequency” EPs. The EPs were elicited by a spatially unpatterned (blank) patch of light. The data show the quite different plot of EP amplitude versus pattern reversal frequency for pattern EPs. (Fron Ref. 10).

FIG. 4
FIG. 4

“Pure” and “contaminated” pattern EPs. Plots of evoked potential amplitude versus pattern reversal frequency for small checks (12 arc min side) and large checks (40 arc min side). Small checks gave the largest response for a frequency of about 6 Hz, and a much weaker response near 10 Hz. This clearly distinguished these pattern-specific EPs from flicker EPs that were weak near 6 Hz and of large amplitude near 10 Hz (see Fig. 3 also). In contrast, EPs to large checks were comparatively strong near 10 Hz. This supports the notion that EPs to large checks are a mixture of pattern-specific EPs and EPs to local flicker (Ref. 21) and that these two types of EP depend differently on stimulus repetition frequency.

FIG. 5
FIG. 5

Heterochromatic flicker photometry. A patch of standard white light was alternated with a patch of blue light 24 times per second. The blue light’s intensity was adjusted by the subject until he saw minimum flicker (arrowed, 2 on abscissa). At this point the blue and white lights were, by definition, of equal photometric luminances. The steady-state EP was clearly composed of two components, a medium frequency component of 14 Hz (dotted) and a high-frequency component of 48 Hz (continuous line). Only the high-frequency component fell to a minimum when flicker diappeared. Note that the averaged EPs (a, b, and c) confounded the two components and were therefore virtually uninterpretable. Modified from Ref. 26.

FIG. 6
FIG. 6

Spectral sensitivity of the eye measured by means of high-frequency flicker EPs (filled circles) and by conventional psychophysical heterochromatic flicker photometry (crosses). Agreement here is within 0. 07 log units (18%). Dotted line is CIE curve. Modified from Ref. 26.

FIG. 7
FIG. 7

Astigmatism. Upper part: to the normal eye straight lines look almost equally sharp regardless of orientation, but for an astigmatic eye they look sharp at only one orientation. Lower part: an astigmatic eye views the outside world (here a checkerboard) through a narrow (stenopaeic) slit. The checkerboard looks blurred for all except one orientation of the slit (in this example, a vertical orientation).

FIG. 8
FIG. 8

Speedy evoked potential method to find axes of astigmatism. A—static method. A check pattern was viewed through a narrow slit with the slit angle held constant during the recording of any point on the graph. B—dynamic method. The slit was continuously rotated. EP amplitude peaked when the slit orientation was 45°. C—control. D—4 successive slit rotations. From Ref. 31.

FIG. 9
FIG. 9

Axes of astigmatism displayed by polar plots of EPs. An oscillating check pattern was viewed through a rotating slit as in Fig. 8. EP amplitude was continuously plotted versus slit orientation in polar coordinates. A, B, and C show three replications while the slit rotated 180° in 18 s. EP amplitude was largest in the upper left quadrants, correspnnding to an angle of 30°–50° (see G). The corresponding slit orientation is shown in H. D is a trace recorded after astigmatism was corrected. E—similar to A, B, and C but recorded in 10 s. F—calibration of 5 μV. (From Ref. 31.)

FIG. 10
FIG. 10

Determination of lens prescription for optimally sharp vision. The axis of astigmatism were first found as in Figs. 8 and 9. The check pattern was then viewed through the slit orientated along the axis of astigmatism. In front of the slit was placed a lens whose power oscillated between − 2 diopters and − 4. 5 diopters. The slit was turned through 90° and the measurement repeated. EP amplitude now peaked at about − 2. 2 diopters. (From Ref. 31.)

FIG. 11
FIG. 11

The method of “averaging graphs” can give the graph’s shape more precisely than point-by-point plotting. A—the five lines plot the relation between EP amplitude and stimulus check size at five different moments. The filled circles represent points obtained with an averager. B—the dashed line joins the five averaged points. The continuous line is the average of the five samples of the whole graph shown in A. (Note that this figure is idealized.)

FIG. 12
FIG. 12

Evoked potential amplitude (ordinates) versus check size for an oscillating-checkerboard stimulus pattern. Compare the shapes of the plots for the amblyopic and normal eyes of a child who squinted during infancy. (From Ref. 24.)

FIG. 13
FIG. 13

Speedy assessment of visual acuity is amblyopia. Vibrator (VIB) abruptly moved a checkerboard transparency up and down through one square’s width. This reversing pattern was back-projected onto a screen through a zoom lens (zoom) that slowly zoomed check size up and down. A movie cartoon was superposed on the check stimulus. (From Ref. 24.)

FIG. 14
FIG. 14

Visual stimulus seen by infant. A pattern of rapidly oscillating checks was superposed on a movie cartoon. Check size slowly zoomed while the cartoon ran. The child watched the cartoon and the Fourier analyzer recorded cortical responses to the checks.

FIG. 15
FIG. 15

Method of Fig. 13 used to speedily record two samples of the plots shown in Fig. 12. Check size zoomed from 6 to 60 arc min in 60 s.

FIG. 16
FIG. 16

Visual delay fields for two control subjects. Upper half: the numbers give the retinoperceptual delay for perception for the right eye with reference to the left eye’s fovea. Lower half: same data as upper half. [Text omitted on the printed page] means delay between − 25 and − 10 ms; blank means delay between − 10 and + 10 ms; [Text omitted on the printed page] means delay between + 10 and + 25 ms; means delay greater than + 25 ms. Positive sign or open circle means right eye slower than left. Test target was 15 arc min diameter. (From Ref. 41.)

FIG. 17
FIG. 17

Visual delay fields for two patients with multiple sclerosis. Black areas in lower figure indicate regions of abnormally prolonged delay. (From Ref. 41.)

FIG. 18
FIG. 18

“Medium-frequency” flicker EPs in multiple sclerosis patients and in control subjects. The control subject had similar amplitude and phase plots in either eye. The phase plot for the first patient showed increased slope for the left eye corresponding to a 153 ms increase of delay. The second patient’s phase plot indicates a 116 ms delay increase in the right eye. Amplitude plots give no reliable indication of MS. Right eye, dotted line; left eye, continuous line. (From Ref. 18.)

FIG. 19
FIG. 19

Speedy method for recording EP delay. A—sine waves of 14. 8, 16. 4, and 18. 0 Hz and (lowermost) the complex waveform (created by summing these three sine waves) that drove the flickering light. B—Plots of EP phase versus flicker frequency for two separate 1-min stimulations similar to that recorded in Fig. 20. Note that the slopes of the plots (and hence EP latency) were little affected when EP variability bodily displaced the whole plot. (From Ref. 48.)

FIG. 20
FIG. 20

Display of three simultaneously recorded EPs recorded while viewing the irregularly flickering light. The radial distance of the superposed star gives the amplitude of the 14. 8 Hz EP, while angle ϕ1 gives its phase. Similarly for the 16. 4 Hz and 18. 0 Hz EPs. The continuous circle is a 5 μV calibration. (From Ref. 48.)

FIG. 21
FIG. 21

Evoked potentials produced by a pattern defined only by color differences. Uppermost: an unpatterned, foveally viewed yellow patch abruptly changed to a patch of equiluminant red and green checks (appearance A), then back again (disappearance D). The averaged EP traces marked “red-green” show that EPs to appearance of chromatic contrast were clear in normal but absent in color-blind (deuteranopic) subjects. The pattern of red-green checks was composed of a pattern of bright and dark red checks optically interdigitated between bright and dark green checks. Averaged EP traces marked “red” and “green” show that these constituent patterns (defined by brightness differences) gave clear EPs in both normal and color-blind subjects.

FIG. 22
FIG. 22

Detection and assessment of color blindness using steady-state EPs. The stimulus was a foveally viewed pattern of red and green checks that exchanged places 6 times/s. EP amplitudes (ordinates) were plotted versus the intensities of the green checks (abscissas). For normal subjects EPs were not abolished for any ratio of red-green intensities so long as color differences existed (two subjects, continuous lines). But for color-blind subjects, EP amplitude fell to noise level for a unique precisely defined ratio of red-green intensity, thus detecting the color defect and also giving a precise measure of red-green sensitivity. (Modified from Ref. 57 and Ref. 9.)

FIG. 23
FIG. 23

Illustrates proposal that fine-pattern information is handled in parallel long-wavelength and medium-wavelength channels that fuse before the stage that underlies perception. The function of this arrangement might be to counter the blurring effect of the eye’s chromatic aberration. Red and green images cannot simultaneously be in sharp focus because of the eye’s chromatic aberration, but when one or the other image is momentarily sharp, the corresponding color channel feeds a strong signal to the gate, the function of which is to transmit the stronger pattern signal, possibly by means of inhibition between the red and green pattern channels. Consequently, in everyday life, it is the more sharply focussed image that is seen at any given moment, independently of whether it is the red or green image. Furthermore, beyond the gate the spectral sensitivity for fine pattern vision is the photopic Vλ curve rather than being that of the medium- or long-wavelength channel. (From Refs. 36 and 60.)

FIG. 24
FIG. 24

Evoked potential feedback where brain signals control the stimulus. The visual stimulus (upper left insert) was a red pattern of bright and dark 9 min checks that exchanged places six times per second. Superposed on this 2° pattern was a desensitizing patch of light 6° in diameter. The pattern elicited a 6 Hz evoked potential whose amplitude continuously controlled the intensity of the densensitizing light (right-hand ordinates and traces marked “LIGHT”). This feedback was set to maintain EP amplitude constant at 6 μV (left-hand ordinates and traces marked “EP”). When the color of the desensitizing light was changed from yellow (left side of figure) to blue (right side of figure), the EP feedback immediately increased the intensity of the desensitizing light by about 40 times so as to maintain EP amplitude constant. Since the effect of the red (676 nm) pattern was almost entirely confined to the long-wavelength channel, this means that the red channel is about 40 times less sensitive to blue light than to yellow light. (Modified from Ref. 32.)

FIG. 25
FIG. 25

Spectral sensitivities of long-wavelength and medium-wavelength pattern channels measured as shown in Fig. 24 using red checks for the long-wavelength channel and green checks for the medium-wavelength channel. (Modified from Refs. 32 and 37.)