Abstract

Spectra of ionized Zr, Nb, and Mo have been observed in sliding spark discharges at peak currents up to 4000 A on the 10.7 m normal and grazing incidence spectrographs at NBS. From these observations the group of 4s24p4–4s4p5 transitions in Zr vii, Nb viii, and Mo ix have been identified and measured. The energy parameters obtained from least-squares fits to the resultant energy levels are compared with Hartree-Fock calculations.

© 1976 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. S. Z. Chaghtai, “Term Analysis of Zr vii, Nb viii and Mo ix”, Phys. Scr. 1, 104–108 (1970).
    [Crossref]
  2. J. Reader, G. L. Epstein, and J. O. Ekberg, “Spectra of Rb ii, Sr iii, Y iv, Zr v, Nb vi, and Mo vii in the Vacuum Ultraviolet,” J. Opt. Soc. Am. 62, 273–284 (1972).
    [Crossref]
  3. C. B. Ross, “Wavelengths and Energy Levels of Singly Ionized Copper, Cu ii,” (available from Clearinghouse for Federal Scientific and Technical Information, National Bureau of Standards, U. S. Department of Commerce, Springfield, Va. 22151).
  4. J. Reader, C. H. Corliss, and R. Zalubas, “Reference Wavelengths of Y v in the 200–460 Å Region,” program and abstracts of Atomic Spectroscopy Symposium, National Bureau of Standards, Washington, D. C., 1975.
  5. G. L. Epstein and J. Reader, “Spectrum of doubly ionized yttrium (Y iii),” J. Opt. Soc. Am. 65, 310–314 (1975).
    [Crossref]
  6. J. Reader and G. L. Epstein, “Analysis of the Spectrum of Quadruply Ionized Yttrium (Y v),” J. Opt. Soc. Am. 62, 619–622 (1972).
    [Crossref]
  7. R. Zalubas, J. Reader, and C. H. Corliss, “4s24p4–4s 4p5 transitions in five-times ionized yttrium (Y vi),” J. Opt. Soc. Am. 66, 35–36 (1976).
    [Crossref]
  8. B. Edlén, “Wellenlängen und Termsysteme zu den Atomspektren der Elemente Lithium, Beryllium, Bor, Kohlenstoff, Stickstoff und Sauerstoff,” Nova Acta Regiae Soc. Sci. Ups. (IV) 9, No. 6 (1934).
  9. B. Edlén, “Wavelength Measurements in the Vacuum Ultraviolet,” Rep. Prog. Phys. 26, 181–212 (1963).
    [Crossref]
  10. R. L. Kelly and L. J. Palumbo, Atomic and Ionic Emission Lines Below 2000 Angstroms–Hydrogen Through Krypton, (U. S. GPO, Washington, D.C., 1973).
  11. V. Kaufman and B. Edlén, “Reference Wavelengths from Atomic Spectra in the Range 15 Å to 25000 Å,” J. Phys. Chem. Ref. Data 3, 825–895 (1974).
    [Crossref]
  12. C. Froese, “Numerical Solution of the Hartree-Fock Equations,” Can. J. Phys. 41, 1895–1910 (1963); and C. Froese-Fischer and M. Wilson, “Programs for Atomic Structure Calculations,” (available from Clearinghouse for Federal Scientific and Technical Information, National Bureau of Standards, U.S. Department of Commerce, Springfield, Va, 22151).
    [Crossref]
  13. J. E. Hansen and W. Persson, “4s24p4 and 4s 4p5 configurations in Rb iv and Sr v,” J. Opt. Soc. Am. 64, 696–698 (1974). The values of Eav for the 4s24p4 configuration in this paper do not take into account the contribution of the effective interaction parameter α(4p 4p) to the average energy of the configuration. To account for this contribution, the values of Eav for Kr iii, Rb iv, and Sr v in this reference should be increased by 3.2α.
    [Crossref]
  14. Optimization of the level values was done with the computer program elcalc communicated to us privately by L. J. Radziemski
  15. M. S. Z. Chaghtai and K. Rahimullah, “Coupling Conditions and Level Structure of the np4-Configurations,” Nuovo Cimento A 17, 162–170 (1973).
    [Crossref]

1976 (1)

1975 (1)

1974 (2)

1973 (1)

M. S. Z. Chaghtai and K. Rahimullah, “Coupling Conditions and Level Structure of the np4-Configurations,” Nuovo Cimento A 17, 162–170 (1973).
[Crossref]

1972 (2)

1970 (1)

M. S. Z. Chaghtai, “Term Analysis of Zr vii, Nb viii and Mo ix”, Phys. Scr. 1, 104–108 (1970).
[Crossref]

1963 (2)

C. Froese, “Numerical Solution of the Hartree-Fock Equations,” Can. J. Phys. 41, 1895–1910 (1963); and C. Froese-Fischer and M. Wilson, “Programs for Atomic Structure Calculations,” (available from Clearinghouse for Federal Scientific and Technical Information, National Bureau of Standards, U.S. Department of Commerce, Springfield, Va, 22151).
[Crossref]

B. Edlén, “Wavelength Measurements in the Vacuum Ultraviolet,” Rep. Prog. Phys. 26, 181–212 (1963).
[Crossref]

1934 (1)

B. Edlén, “Wellenlängen und Termsysteme zu den Atomspektren der Elemente Lithium, Beryllium, Bor, Kohlenstoff, Stickstoff und Sauerstoff,” Nova Acta Regiae Soc. Sci. Ups. (IV) 9, No. 6 (1934).

Chaghtai, M. S. Z.

M. S. Z. Chaghtai and K. Rahimullah, “Coupling Conditions and Level Structure of the np4-Configurations,” Nuovo Cimento A 17, 162–170 (1973).
[Crossref]

M. S. Z. Chaghtai, “Term Analysis of Zr vii, Nb viii and Mo ix”, Phys. Scr. 1, 104–108 (1970).
[Crossref]

Corliss, C. H.

R. Zalubas, J. Reader, and C. H. Corliss, “4s24p4–4s 4p5 transitions in five-times ionized yttrium (Y vi),” J. Opt. Soc. Am. 66, 35–36 (1976).
[Crossref]

J. Reader, C. H. Corliss, and R. Zalubas, “Reference Wavelengths of Y v in the 200–460 Å Region,” program and abstracts of Atomic Spectroscopy Symposium, National Bureau of Standards, Washington, D. C., 1975.

Edlén, B.

V. Kaufman and B. Edlén, “Reference Wavelengths from Atomic Spectra in the Range 15 Å to 25000 Å,” J. Phys. Chem. Ref. Data 3, 825–895 (1974).
[Crossref]

B. Edlén, “Wavelength Measurements in the Vacuum Ultraviolet,” Rep. Prog. Phys. 26, 181–212 (1963).
[Crossref]

B. Edlén, “Wellenlängen und Termsysteme zu den Atomspektren der Elemente Lithium, Beryllium, Bor, Kohlenstoff, Stickstoff und Sauerstoff,” Nova Acta Regiae Soc. Sci. Ups. (IV) 9, No. 6 (1934).

Ekberg, J. O.

Epstein, G. L.

Froese, C.

C. Froese, “Numerical Solution of the Hartree-Fock Equations,” Can. J. Phys. 41, 1895–1910 (1963); and C. Froese-Fischer and M. Wilson, “Programs for Atomic Structure Calculations,” (available from Clearinghouse for Federal Scientific and Technical Information, National Bureau of Standards, U.S. Department of Commerce, Springfield, Va, 22151).
[Crossref]

Hansen, J. E.

Kaufman, V.

V. Kaufman and B. Edlén, “Reference Wavelengths from Atomic Spectra in the Range 15 Å to 25000 Å,” J. Phys. Chem. Ref. Data 3, 825–895 (1974).
[Crossref]

Kelly, R. L.

R. L. Kelly and L. J. Palumbo, Atomic and Ionic Emission Lines Below 2000 Angstroms–Hydrogen Through Krypton, (U. S. GPO, Washington, D.C., 1973).

Palumbo, L. J.

R. L. Kelly and L. J. Palumbo, Atomic and Ionic Emission Lines Below 2000 Angstroms–Hydrogen Through Krypton, (U. S. GPO, Washington, D.C., 1973).

Persson, W.

Radziemski, L. J.

Optimization of the level values was done with the computer program elcalc communicated to us privately by L. J. Radziemski

Rahimullah, K.

M. S. Z. Chaghtai and K. Rahimullah, “Coupling Conditions and Level Structure of the np4-Configurations,” Nuovo Cimento A 17, 162–170 (1973).
[Crossref]

Reader, J.

Ross, C. B.

C. B. Ross, “Wavelengths and Energy Levels of Singly Ionized Copper, Cu ii,” (available from Clearinghouse for Federal Scientific and Technical Information, National Bureau of Standards, U. S. Department of Commerce, Springfield, Va. 22151).

Zalubas, R.

R. Zalubas, J. Reader, and C. H. Corliss, “4s24p4–4s 4p5 transitions in five-times ionized yttrium (Y vi),” J. Opt. Soc. Am. 66, 35–36 (1976).
[Crossref]

J. Reader, C. H. Corliss, and R. Zalubas, “Reference Wavelengths of Y v in the 200–460 Å Region,” program and abstracts of Atomic Spectroscopy Symposium, National Bureau of Standards, Washington, D. C., 1975.

Can. J. Phys. (1)

C. Froese, “Numerical Solution of the Hartree-Fock Equations,” Can. J. Phys. 41, 1895–1910 (1963); and C. Froese-Fischer and M. Wilson, “Programs for Atomic Structure Calculations,” (available from Clearinghouse for Federal Scientific and Technical Information, National Bureau of Standards, U.S. Department of Commerce, Springfield, Va, 22151).
[Crossref]

J. Opt. Soc. Am. (5)

J. Phys. Chem. Ref. Data (1)

V. Kaufman and B. Edlén, “Reference Wavelengths from Atomic Spectra in the Range 15 Å to 25000 Å,” J. Phys. Chem. Ref. Data 3, 825–895 (1974).
[Crossref]

Nova Acta Regiae Soc. Sci. Ups. (IV) (1)

B. Edlén, “Wellenlängen und Termsysteme zu den Atomspektren der Elemente Lithium, Beryllium, Bor, Kohlenstoff, Stickstoff und Sauerstoff,” Nova Acta Regiae Soc. Sci. Ups. (IV) 9, No. 6 (1934).

Nuovo Cimento A (1)

M. S. Z. Chaghtai and K. Rahimullah, “Coupling Conditions and Level Structure of the np4-Configurations,” Nuovo Cimento A 17, 162–170 (1973).
[Crossref]

Phys. Scr. (1)

M. S. Z. Chaghtai, “Term Analysis of Zr vii, Nb viii and Mo ix”, Phys. Scr. 1, 104–108 (1970).
[Crossref]

Rep. Prog. Phys. (1)

B. Edlén, “Wavelength Measurements in the Vacuum Ultraviolet,” Rep. Prog. Phys. 26, 181–212 (1963).
[Crossref]

Other (4)

R. L. Kelly and L. J. Palumbo, Atomic and Ionic Emission Lines Below 2000 Angstroms–Hydrogen Through Krypton, (U. S. GPO, Washington, D.C., 1973).

C. B. Ross, “Wavelengths and Energy Levels of Singly Ionized Copper, Cu ii,” (available from Clearinghouse for Federal Scientific and Technical Information, National Bureau of Standards, U. S. Department of Commerce, Springfield, Va. 22151).

J. Reader, C. H. Corliss, and R. Zalubas, “Reference Wavelengths of Y v in the 200–460 Å Region,” program and abstracts of Atomic Spectroscopy Symposium, National Bureau of Standards, Washington, D. C., 1975.

Optimization of the level values was done with the computer program elcalc communicated to us privately by L. J. Radziemski

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Tables (8)

Tables Icon

TABLE I Observed 4s24p4–4s4p5 transitions in the spectrum of Zr vii.

Tables Icon

TABLE II Observed 4s24p4–4s4p5 transitions in the spectrum of Nb viii. Symbol: c, complex.

Tables Icon

TABLE III Observed 4s24p4–4s4p5 transitions in the spectrum of MO ix.

Tables Icon

TABLE IV Energy levels in cm−1 of the 4s24p4 and 4s4p5 configurations of Zr vii, Nb viii, and Mo ix.

Tables Icon

TABLE V Energy parameters in cm−1 and mean errors Δ of least-squares fits for the 4s24p4 and 4s4p5 configurations of Zr vii, Nb viii, and MO ix. Value of Eav for the 4s24p4 configuration listed in the HF column is that obtained by diagonalizing the energy matrix with the HF parameters, 3P2 level set at zero.

Tables Icon

TABLE VI Calculated energy level values in cm−1 and percentage compositions for the 4s24p4 configurations of Zr vii, Nb viii, and Mo ix. Negative eigenvector components are preceded by a minus sign.

Tables Icon

TABLE VII Comparison of present level values with previous results.

Tables Icon

TABLE VIII Predicted wavelengths in Å of transitions within the 4s24p4 configurations of Zr vii, Nb viii, and Mo ix. Wavelengths below 2000 Å are in vacuum, those above 2000 Å are in air. The uncertainties correspond to an estimated uncertainty of ± 1.4 cm−1 in the calculated wavenumbers.