Abstract

We report the observation of over 100 new high-lying odd levels in atomic uranium between 32 600 and 34 200 cm−1 using tunable laser techniques. These augment the 32 odd levels previously determined in this energy regime by conventional atomic spectroscopy. The method used in these studies, multistep photoionization under pulsed dye laser excitation, was also employed to make J assignments, measure radiative lifetimes, and to obtain absorption cross sections of transitions involving these levels.

© 1976 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. A. Tuccio, J. W. Dubrin, O. G. Peterson, and B. B. Snavely, “Two-Step, Selective Photoionization of 235U in Uranium Vapor,” IEEE J. Quantum Electron. QE-10, 790D (1974). See also, S. A. Tuccio, R. J. Foley, J. W. Dubrin, and O. Krikorian, “Macroscopic Isotope Separation of Uranium by Selective Photoionization,” ibid. QE-11, 101D (1975).
    [Crossref]
  2. B. B. Snavely, P. W. Solarz, and S. A. Tuccio, “Separation of Uranium Isotopes by Selective Photoionization,” in Laser Spectroscopy, Proceedings of the Second International Conference, Megeve, France, June 23–27, 1975, edited by S. Haroche and et al. (Springer-Verlag, Berlin, 1975), p. 268–274.
  3. G. S. Janes, I. Itzkan, C. T. Pike, R. H. Levy, and L. Levin, “Two-Photon Laser Isotope Separation of Atomic Uranium-Spectroscopic Studies, Excited State Lifetimes and Photoionization Cross-Sections,” IEEE J. Quant. Electron. QE-11, 101D–103D (1975).
  4. L. J. Radziemski, S. Gerstenkorn, and P. Luc, “Uranium Transitions and Energy Levels Which May be Useful in Atomic-Photoionization Schemes for Separating 238U and 235U,” Opt. Commun. 15, 273–276 (1975).
    [Crossref]
  5. I. Nebenzahl and M. Levin, “Process for Isotope Separation,” Patent Disclosure 2312 194, Federal Republic of Germany, 1973 (unpublished).
  6. J. Blaise and L. J. Radziemski, “Energy levels of neutral atomic uranium, U i,” J. Opt. Soc. Am. (to be published).
  7. Much of the information on the U emission spectrum that we used is from D. W. Steinhaus, L. J. Radziemski, R. D. Cowan, J. Blaise, G. Guelachvili, Z. B. Osman, and J. Verges, “Present Status of the Analysis of the First and Second Spectra of Uranium (U i and U ii) as Derived from Measurements of Optical Spectra,” Los Alamos Scientific Report LA 4501, 1971 (unpublished); is available from National Technical Information Service, 5285 Port Royal Rd., Springfield, Va. 22151.
  8. L. J. Radziemski (private communications, 1974, 1975, 1976).
  9. W. Krupke, (private communication, 1974).
  10. F. Guyon, J. Blaise, and J. F. Wyart, “Etude Parametrique des Configurations Impaires Profondes dans les Spectres de l’Uranium, U ii,” J. Phys. (Paris) 35, 929–933 (1974).
    [Crossref]
  11. J. Z. Klose, “Mean life of the 27 877-cm−1 level in U i,” Phys. Rev. A 11, 1840–1844 (1975).
    [Crossref]
  12. C. H. Corliss and R. W. Bozman, Experimental Transition Probabilities for Spectral Lines of Seventy Elements, U. S. Natl. Bur. Stds. Monograph No. 53 (U. S. GPO, Washington, D. C., 1962).
  13. S. Tuccio (private communication, 1974).
  14. R. W. Solarz, C. A. May, L. R. Carlson, E. F. Worden, S. A. Johnson, J. A. Paisner, and L. J. Radziemski, “Detection of Rydberg states in atomic uranium using time resolved stepwise laser photoionization,” Phys. Rev. A (to be published).

1975 (3)

G. S. Janes, I. Itzkan, C. T. Pike, R. H. Levy, and L. Levin, “Two-Photon Laser Isotope Separation of Atomic Uranium-Spectroscopic Studies, Excited State Lifetimes and Photoionization Cross-Sections,” IEEE J. Quant. Electron. QE-11, 101D–103D (1975).

L. J. Radziemski, S. Gerstenkorn, and P. Luc, “Uranium Transitions and Energy Levels Which May be Useful in Atomic-Photoionization Schemes for Separating 238U and 235U,” Opt. Commun. 15, 273–276 (1975).
[Crossref]

J. Z. Klose, “Mean life of the 27 877-cm−1 level in U i,” Phys. Rev. A 11, 1840–1844 (1975).
[Crossref]

1974 (2)

S. A. Tuccio, J. W. Dubrin, O. G. Peterson, and B. B. Snavely, “Two-Step, Selective Photoionization of 235U in Uranium Vapor,” IEEE J. Quantum Electron. QE-10, 790D (1974). See also, S. A. Tuccio, R. J. Foley, J. W. Dubrin, and O. Krikorian, “Macroscopic Isotope Separation of Uranium by Selective Photoionization,” ibid. QE-11, 101D (1975).
[Crossref]

F. Guyon, J. Blaise, and J. F. Wyart, “Etude Parametrique des Configurations Impaires Profondes dans les Spectres de l’Uranium, U ii,” J. Phys. (Paris) 35, 929–933 (1974).
[Crossref]

Blaise, J.

F. Guyon, J. Blaise, and J. F. Wyart, “Etude Parametrique des Configurations Impaires Profondes dans les Spectres de l’Uranium, U ii,” J. Phys. (Paris) 35, 929–933 (1974).
[Crossref]

Much of the information on the U emission spectrum that we used is from D. W. Steinhaus, L. J. Radziemski, R. D. Cowan, J. Blaise, G. Guelachvili, Z. B. Osman, and J. Verges, “Present Status of the Analysis of the First and Second Spectra of Uranium (U i and U ii) as Derived from Measurements of Optical Spectra,” Los Alamos Scientific Report LA 4501, 1971 (unpublished); is available from National Technical Information Service, 5285 Port Royal Rd., Springfield, Va. 22151.

J. Blaise and L. J. Radziemski, “Energy levels of neutral atomic uranium, U i,” J. Opt. Soc. Am. (to be published).

Bozman, R. W.

C. H. Corliss and R. W. Bozman, Experimental Transition Probabilities for Spectral Lines of Seventy Elements, U. S. Natl. Bur. Stds. Monograph No. 53 (U. S. GPO, Washington, D. C., 1962).

Carlson, L. R.

R. W. Solarz, C. A. May, L. R. Carlson, E. F. Worden, S. A. Johnson, J. A. Paisner, and L. J. Radziemski, “Detection of Rydberg states in atomic uranium using time resolved stepwise laser photoionization,” Phys. Rev. A (to be published).

Corliss, C. H.

C. H. Corliss and R. W. Bozman, Experimental Transition Probabilities for Spectral Lines of Seventy Elements, U. S. Natl. Bur. Stds. Monograph No. 53 (U. S. GPO, Washington, D. C., 1962).

Cowan, R. D.

Much of the information on the U emission spectrum that we used is from D. W. Steinhaus, L. J. Radziemski, R. D. Cowan, J. Blaise, G. Guelachvili, Z. B. Osman, and J. Verges, “Present Status of the Analysis of the First and Second Spectra of Uranium (U i and U ii) as Derived from Measurements of Optical Spectra,” Los Alamos Scientific Report LA 4501, 1971 (unpublished); is available from National Technical Information Service, 5285 Port Royal Rd., Springfield, Va. 22151.

Dubrin, J. W.

S. A. Tuccio, J. W. Dubrin, O. G. Peterson, and B. B. Snavely, “Two-Step, Selective Photoionization of 235U in Uranium Vapor,” IEEE J. Quantum Electron. QE-10, 790D (1974). See also, S. A. Tuccio, R. J. Foley, J. W. Dubrin, and O. Krikorian, “Macroscopic Isotope Separation of Uranium by Selective Photoionization,” ibid. QE-11, 101D (1975).
[Crossref]

Gerstenkorn, S.

L. J. Radziemski, S. Gerstenkorn, and P. Luc, “Uranium Transitions and Energy Levels Which May be Useful in Atomic-Photoionization Schemes for Separating 238U and 235U,” Opt. Commun. 15, 273–276 (1975).
[Crossref]

Guelachvili, G.

Much of the information on the U emission spectrum that we used is from D. W. Steinhaus, L. J. Radziemski, R. D. Cowan, J. Blaise, G. Guelachvili, Z. B. Osman, and J. Verges, “Present Status of the Analysis of the First and Second Spectra of Uranium (U i and U ii) as Derived from Measurements of Optical Spectra,” Los Alamos Scientific Report LA 4501, 1971 (unpublished); is available from National Technical Information Service, 5285 Port Royal Rd., Springfield, Va. 22151.

Guyon, F.

F. Guyon, J. Blaise, and J. F. Wyart, “Etude Parametrique des Configurations Impaires Profondes dans les Spectres de l’Uranium, U ii,” J. Phys. (Paris) 35, 929–933 (1974).
[Crossref]

Itzkan, I.

G. S. Janes, I. Itzkan, C. T. Pike, R. H. Levy, and L. Levin, “Two-Photon Laser Isotope Separation of Atomic Uranium-Spectroscopic Studies, Excited State Lifetimes and Photoionization Cross-Sections,” IEEE J. Quant. Electron. QE-11, 101D–103D (1975).

Janes, G. S.

G. S. Janes, I. Itzkan, C. T. Pike, R. H. Levy, and L. Levin, “Two-Photon Laser Isotope Separation of Atomic Uranium-Spectroscopic Studies, Excited State Lifetimes and Photoionization Cross-Sections,” IEEE J. Quant. Electron. QE-11, 101D–103D (1975).

Johnson, S. A.

R. W. Solarz, C. A. May, L. R. Carlson, E. F. Worden, S. A. Johnson, J. A. Paisner, and L. J. Radziemski, “Detection of Rydberg states in atomic uranium using time resolved stepwise laser photoionization,” Phys. Rev. A (to be published).

Klose, J. Z.

J. Z. Klose, “Mean life of the 27 877-cm−1 level in U i,” Phys. Rev. A 11, 1840–1844 (1975).
[Crossref]

Krupke, W.

W. Krupke, (private communication, 1974).

Levin, L.

G. S. Janes, I. Itzkan, C. T. Pike, R. H. Levy, and L. Levin, “Two-Photon Laser Isotope Separation of Atomic Uranium-Spectroscopic Studies, Excited State Lifetimes and Photoionization Cross-Sections,” IEEE J. Quant. Electron. QE-11, 101D–103D (1975).

Levin, M.

I. Nebenzahl and M. Levin, “Process for Isotope Separation,” Patent Disclosure 2312 194, Federal Republic of Germany, 1973 (unpublished).

Levy, R. H.

G. S. Janes, I. Itzkan, C. T. Pike, R. H. Levy, and L. Levin, “Two-Photon Laser Isotope Separation of Atomic Uranium-Spectroscopic Studies, Excited State Lifetimes and Photoionization Cross-Sections,” IEEE J. Quant. Electron. QE-11, 101D–103D (1975).

Luc, P.

L. J. Radziemski, S. Gerstenkorn, and P. Luc, “Uranium Transitions and Energy Levels Which May be Useful in Atomic-Photoionization Schemes for Separating 238U and 235U,” Opt. Commun. 15, 273–276 (1975).
[Crossref]

May, C. A.

R. W. Solarz, C. A. May, L. R. Carlson, E. F. Worden, S. A. Johnson, J. A. Paisner, and L. J. Radziemski, “Detection of Rydberg states in atomic uranium using time resolved stepwise laser photoionization,” Phys. Rev. A (to be published).

Nebenzahl, I.

I. Nebenzahl and M. Levin, “Process for Isotope Separation,” Patent Disclosure 2312 194, Federal Republic of Germany, 1973 (unpublished).

Osman, Z. B.

Much of the information on the U emission spectrum that we used is from D. W. Steinhaus, L. J. Radziemski, R. D. Cowan, J. Blaise, G. Guelachvili, Z. B. Osman, and J. Verges, “Present Status of the Analysis of the First and Second Spectra of Uranium (U i and U ii) as Derived from Measurements of Optical Spectra,” Los Alamos Scientific Report LA 4501, 1971 (unpublished); is available from National Technical Information Service, 5285 Port Royal Rd., Springfield, Va. 22151.

Paisner, J. A.

R. W. Solarz, C. A. May, L. R. Carlson, E. F. Worden, S. A. Johnson, J. A. Paisner, and L. J. Radziemski, “Detection of Rydberg states in atomic uranium using time resolved stepwise laser photoionization,” Phys. Rev. A (to be published).

Peterson, O. G.

S. A. Tuccio, J. W. Dubrin, O. G. Peterson, and B. B. Snavely, “Two-Step, Selective Photoionization of 235U in Uranium Vapor,” IEEE J. Quantum Electron. QE-10, 790D (1974). See also, S. A. Tuccio, R. J. Foley, J. W. Dubrin, and O. Krikorian, “Macroscopic Isotope Separation of Uranium by Selective Photoionization,” ibid. QE-11, 101D (1975).
[Crossref]

Pike, C. T.

G. S. Janes, I. Itzkan, C. T. Pike, R. H. Levy, and L. Levin, “Two-Photon Laser Isotope Separation of Atomic Uranium-Spectroscopic Studies, Excited State Lifetimes and Photoionization Cross-Sections,” IEEE J. Quant. Electron. QE-11, 101D–103D (1975).

Radziemski, L. J.

L. J. Radziemski, S. Gerstenkorn, and P. Luc, “Uranium Transitions and Energy Levels Which May be Useful in Atomic-Photoionization Schemes for Separating 238U and 235U,” Opt. Commun. 15, 273–276 (1975).
[Crossref]

J. Blaise and L. J. Radziemski, “Energy levels of neutral atomic uranium, U i,” J. Opt. Soc. Am. (to be published).

L. J. Radziemski (private communications, 1974, 1975, 1976).

Much of the information on the U emission spectrum that we used is from D. W. Steinhaus, L. J. Radziemski, R. D. Cowan, J. Blaise, G. Guelachvili, Z. B. Osman, and J. Verges, “Present Status of the Analysis of the First and Second Spectra of Uranium (U i and U ii) as Derived from Measurements of Optical Spectra,” Los Alamos Scientific Report LA 4501, 1971 (unpublished); is available from National Technical Information Service, 5285 Port Royal Rd., Springfield, Va. 22151.

R. W. Solarz, C. A. May, L. R. Carlson, E. F. Worden, S. A. Johnson, J. A. Paisner, and L. J. Radziemski, “Detection of Rydberg states in atomic uranium using time resolved stepwise laser photoionization,” Phys. Rev. A (to be published).

Snavely, B. B.

S. A. Tuccio, J. W. Dubrin, O. G. Peterson, and B. B. Snavely, “Two-Step, Selective Photoionization of 235U in Uranium Vapor,” IEEE J. Quantum Electron. QE-10, 790D (1974). See also, S. A. Tuccio, R. J. Foley, J. W. Dubrin, and O. Krikorian, “Macroscopic Isotope Separation of Uranium by Selective Photoionization,” ibid. QE-11, 101D (1975).
[Crossref]

B. B. Snavely, P. W. Solarz, and S. A. Tuccio, “Separation of Uranium Isotopes by Selective Photoionization,” in Laser Spectroscopy, Proceedings of the Second International Conference, Megeve, France, June 23–27, 1975, edited by S. Haroche and et al. (Springer-Verlag, Berlin, 1975), p. 268–274.

Solarz, P. W.

B. B. Snavely, P. W. Solarz, and S. A. Tuccio, “Separation of Uranium Isotopes by Selective Photoionization,” in Laser Spectroscopy, Proceedings of the Second International Conference, Megeve, France, June 23–27, 1975, edited by S. Haroche and et al. (Springer-Verlag, Berlin, 1975), p. 268–274.

Solarz, R. W.

R. W. Solarz, C. A. May, L. R. Carlson, E. F. Worden, S. A. Johnson, J. A. Paisner, and L. J. Radziemski, “Detection of Rydberg states in atomic uranium using time resolved stepwise laser photoionization,” Phys. Rev. A (to be published).

Steinhaus, D. W.

Much of the information on the U emission spectrum that we used is from D. W. Steinhaus, L. J. Radziemski, R. D. Cowan, J. Blaise, G. Guelachvili, Z. B. Osman, and J. Verges, “Present Status of the Analysis of the First and Second Spectra of Uranium (U i and U ii) as Derived from Measurements of Optical Spectra,” Los Alamos Scientific Report LA 4501, 1971 (unpublished); is available from National Technical Information Service, 5285 Port Royal Rd., Springfield, Va. 22151.

Tuccio, S.

S. Tuccio (private communication, 1974).

Tuccio, S. A.

S. A. Tuccio, J. W. Dubrin, O. G. Peterson, and B. B. Snavely, “Two-Step, Selective Photoionization of 235U in Uranium Vapor,” IEEE J. Quantum Electron. QE-10, 790D (1974). See also, S. A. Tuccio, R. J. Foley, J. W. Dubrin, and O. Krikorian, “Macroscopic Isotope Separation of Uranium by Selective Photoionization,” ibid. QE-11, 101D (1975).
[Crossref]

B. B. Snavely, P. W. Solarz, and S. A. Tuccio, “Separation of Uranium Isotopes by Selective Photoionization,” in Laser Spectroscopy, Proceedings of the Second International Conference, Megeve, France, June 23–27, 1975, edited by S. Haroche and et al. (Springer-Verlag, Berlin, 1975), p. 268–274.

Verges, J.

Much of the information on the U emission spectrum that we used is from D. W. Steinhaus, L. J. Radziemski, R. D. Cowan, J. Blaise, G. Guelachvili, Z. B. Osman, and J. Verges, “Present Status of the Analysis of the First and Second Spectra of Uranium (U i and U ii) as Derived from Measurements of Optical Spectra,” Los Alamos Scientific Report LA 4501, 1971 (unpublished); is available from National Technical Information Service, 5285 Port Royal Rd., Springfield, Va. 22151.

Worden, E. F.

R. W. Solarz, C. A. May, L. R. Carlson, E. F. Worden, S. A. Johnson, J. A. Paisner, and L. J. Radziemski, “Detection of Rydberg states in atomic uranium using time resolved stepwise laser photoionization,” Phys. Rev. A (to be published).

Wyart, J. F.

F. Guyon, J. Blaise, and J. F. Wyart, “Etude Parametrique des Configurations Impaires Profondes dans les Spectres de l’Uranium, U ii,” J. Phys. (Paris) 35, 929–933 (1974).
[Crossref]

IEEE J. Quant. Electron. (1)

G. S. Janes, I. Itzkan, C. T. Pike, R. H. Levy, and L. Levin, “Two-Photon Laser Isotope Separation of Atomic Uranium-Spectroscopic Studies, Excited State Lifetimes and Photoionization Cross-Sections,” IEEE J. Quant. Electron. QE-11, 101D–103D (1975).

IEEE J. Quantum Electron. (1)

S. A. Tuccio, J. W. Dubrin, O. G. Peterson, and B. B. Snavely, “Two-Step, Selective Photoionization of 235U in Uranium Vapor,” IEEE J. Quantum Electron. QE-10, 790D (1974). See also, S. A. Tuccio, R. J. Foley, J. W. Dubrin, and O. Krikorian, “Macroscopic Isotope Separation of Uranium by Selective Photoionization,” ibid. QE-11, 101D (1975).
[Crossref]

J. Phys. (Paris) (1)

F. Guyon, J. Blaise, and J. F. Wyart, “Etude Parametrique des Configurations Impaires Profondes dans les Spectres de l’Uranium, U ii,” J. Phys. (Paris) 35, 929–933 (1974).
[Crossref]

Opt. Commun. (1)

L. J. Radziemski, S. Gerstenkorn, and P. Luc, “Uranium Transitions and Energy Levels Which May be Useful in Atomic-Photoionization Schemes for Separating 238U and 235U,” Opt. Commun. 15, 273–276 (1975).
[Crossref]

Phys. Rev. A (1)

J. Z. Klose, “Mean life of the 27 877-cm−1 level in U i,” Phys. Rev. A 11, 1840–1844 (1975).
[Crossref]

Other (9)

C. H. Corliss and R. W. Bozman, Experimental Transition Probabilities for Spectral Lines of Seventy Elements, U. S. Natl. Bur. Stds. Monograph No. 53 (U. S. GPO, Washington, D. C., 1962).

S. Tuccio (private communication, 1974).

R. W. Solarz, C. A. May, L. R. Carlson, E. F. Worden, S. A. Johnson, J. A. Paisner, and L. J. Radziemski, “Detection of Rydberg states in atomic uranium using time resolved stepwise laser photoionization,” Phys. Rev. A (to be published).

I. Nebenzahl and M. Levin, “Process for Isotope Separation,” Patent Disclosure 2312 194, Federal Republic of Germany, 1973 (unpublished).

J. Blaise and L. J. Radziemski, “Energy levels of neutral atomic uranium, U i,” J. Opt. Soc. Am. (to be published).

Much of the information on the U emission spectrum that we used is from D. W. Steinhaus, L. J. Radziemski, R. D. Cowan, J. Blaise, G. Guelachvili, Z. B. Osman, and J. Verges, “Present Status of the Analysis of the First and Second Spectra of Uranium (U i and U ii) as Derived from Measurements of Optical Spectra,” Los Alamos Scientific Report LA 4501, 1971 (unpublished); is available from National Technical Information Service, 5285 Port Royal Rd., Springfield, Va. 22151.

L. J. Radziemski (private communications, 1974, 1975, 1976).

W. Krupke, (private communication, 1974).

B. B. Snavely, P. W. Solarz, and S. A. Tuccio, “Separation of Uranium Isotopes by Selective Photoionization,” in Laser Spectroscopy, Proceedings of the Second International Conference, Megeve, France, June 23–27, 1975, edited by S. Haroche and et al. (Springer-Verlag, Berlin, 1975), p. 268–274.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

FIG. 1
FIG. 1

Possible selective laser photoionization schemes. (a) Laser at visible wavelength λ3 tuned to an autoionizing transition. (b) λ3 tuned to a high-lying state near the IP (49 935 ± 20 cm−1 in U i), where the subsequent ionization is achieved by an ir photon. This latter scheme was first suggested by Nebenzahl and Levin (Ref. 5).

FIG. 2
FIG. 2

Positions of the lowest levels of previously known U i configurations and the density of observed levels in 10 000 cm−1 intervals. The highest-lying odd level determined is J = 8 at 38 065.189 cm−1. There are five even levels identified above 40 000 cm−1, the most energetic is at 42 062.987 cm−1 (J = 10). (---) Indicates the expected positions of the lowest-lying levels of undiscovered configurations. In all cases, the principal quantum numbers for the f, d, and s elections are 5, 6, and 7, respectively, unless otherwise specified. (Taken in a modified form from Ref. 6.)

FIG. 3
FIG. 3

Multistep laser photoionization spectrometer.

FIG. 4
FIG. 4

Photoion current versus scan wavelength λ2. (a) λ1 = 6056.81 Å and λ2 ≅ 5799 to 5814 Å. The resonances arising from transitions to odd parity levels are indicated by an o. (b) Background scan with laser 1 blocked. Signals are due to the finite laser linewidth and excitation sequences shown in Figs. 5(a) and 5(b). (c) Wavelength calibration provided as laser scans over the monochromator preset at known U wavelengths from the lamp.

FIG. 5
FIG. 5

Excitation sequences that give background peaks. λ1 is fixed in wavelength and λ2 is varied. Processes (c) and (d) are discriminated against by the timing of the laser pulses while processes (a) and (b) are determined by blocking λ1 and performing background scans.

FIG. 6
FIG. 6

Photoion current as a function of delay time of a third laser tuned to an autoionizing transition. Here λ1 = 6056.81 Å and λ2 = 6030.59 Å. The lifetime of the odd level at 33 083.3 cm−1 is 490 (50) ns.

FIG. 7
FIG. 7

Simple rate equation model for the saturation of the photoion signal: N1 and N2 are the population densities of levels 1 and 2 having radiative lifetimes τ1 and τ2; σ(λ) and σi(λ) are the absorption and ionization cross sections at the bound-bound resonant wavelength λ; β is the radiative branching ratio between states 2 and 1, and τ0 is the laser pulse length. The excitation and deexcitation rates are displayed. The number of photoions produced by a probe laser tuned to an autoionization is proportional to population N2 after time τ0.

FIG. 8
FIG. 8

Saturation of photoion signal Sion vs photon flux n(λ). Both transitions are to levels previously determined. For these cases, two photons from laser 2 were not sufficient to ionize [σi(λ) = 0].

Tables (3)

Tables Icon

TABLE I New high-lying odd levels in 238U i between 32 600–34 200 cm−1.

Tables Icon

TABLE II Lifetimes of high-lying odd levels and peak Doppler absorption cross sections at 2100 °C and gA values for transitions from the J = 6 even level at 16 505 cm−1 to these levels in 238U.

Tables Icon

TABLE III Measured even level lifetimes of 238U i.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

S ion = k 2 n ( λ ) σ ( λ ) 2 n ( λ ) σ ( λ ) + 1 / τ 1 + 1 / τ 2 × { 1 - exp [ - ( 2 n ( λ ) σ ( λ ) + 1 τ 1 + 1 τ 2 ) τ 0 ] } .