Abstract

We show how the processes of visual detection and of temporal and spatial summation may be analyzed in terms of parallel luminance (achromatic) and opponent-color systems; a test flash is detected if it exceeds the threshold of either system. The spectral sensitivity of the luminance system may be determined by a flicker method, and has a single broad peak near 555 nm; the spectral sensitivity of the opponent-color system corresponds to the color recognition threshold, and has three peaks at about 440, 530, and 600 nm (on a white background). The temporal and spatial integration of the opponent-color system are generally greater than for the luminance system; further, a white background selectively depresses the sensitivity of the luminance system relative to the opponent-color system. Thus relatively large (1°) and long (200 msec) spectral test flashes on a white background are detected by the opponent-color system except near 570 nm; the contribution of the luminance system becomes more prominent if the size or duration of the test flash is reduced, or if the white background is extinguished. The present analysis is discussed in relation to Stiles’ model of independent π mechanisms.

© 1976 Optical Society of America

Full Article  |  PDF Article
Related Articles
Evidence for the contribution of S cones to the detection of flicker brightness and red–green

Harald J. Teufel and Christian Wehrhahn
J. Opt. Soc. Am. A 17(6) 994-1006 (2000)

Transient lumanopia: the invisibility of flicker in early dark adaptation

Adam Reeves and Shuang Wu
J. Opt. Soc. Am. A 14(9) 2509-2516 (1997)

Spectral sensitivity and adaptation characteristics of cone mechanisms under white-light adaptation

Michael Kalloniatis and Ronald S. Harwerth
J. Opt. Soc. Am. A 7(10) 1912-1928 (1990)

References

  • View by:
  • |
  • |
  • |

  1. W. S. Stiles, Proc. R. Soc. B 127, 67 (1939).
    [Crossref]
  2. W. S. Stiles, Docum. Ophthal. 3, 138 (1949).
    [Crossref]
  3. W. S. Stiles, Proc. Natn. Acad. Sci. 75, 100 (1959).
    [Crossref]
  4. W. Marks, W. H. Dobelle, and E. F. MacNichol, Science 143, 1181 (1964).
    [Crossref] [PubMed]
  5. P. K. Brown and G. Wald, Science 144, 45 (1964).
    [Crossref] [PubMed]
  6. D. E. Mitchell and W. A. H. Rushton, Vision Res. 11, 1045 (1971).
    [Crossref] [PubMed]
  7. R. M. Boynton and D. N. Whitten, Science 170, 1423 (1970).
    [Crossref] [PubMed]
  8. J. M. Enoch, in Handbook of sensory Physiology, Vol. VII/4, edited by D. Jameson and L. M. Hurvich (Springer-Verlag, Berlin, 1972), Chap. 21.
  9. P. E. King-Smith, Nature 255, 69 (1975).
    [Crossref] [PubMed]
  10. H. G. Sperling and R. S. Harwerth, Science 172, 180 (1971).
    [Crossref] [PubMed]
  11. P. E. King-Smith and J. R. Webb, Vision Res. 14, 421 (1974).
    [Crossref] [PubMed]
  12. R. M. Boynton, M. Ikeda, and W. S. Stiles, Vision Res. 4, 87 (1964).
    [Crossref] [PubMed]
  13. S. L. Guth, N. J. Donley, and R. T. Marrocco, Vision Res. 9, 537 (1969).
    [Crossref] [PubMed]
  14. L. M. Hurvich and D. Jameson, Psychol. Rev. 64, 384 (1957).
    [Crossref]
  15. R. L. De Valois, I. Abramov, and G. H. Jacobs, J. Opt. Soc. Am. 56, 966 (1966).
    [Crossref] [PubMed]
  16. T. N. Wiesel and D. H. Hubel, J. Neurophysiol. 29, 1115 (1966).
    [PubMed]
  17. G. Wyszecki and W. S. Stiles, Colour Science (Wiley, New York, 1967), p. 211.
  18. G. B. Rollman and J. Nachmias, Percept. Psychophys. 12, 309 (1972).
    [Crossref]
  19. L. Kerr, Vision Res. 14, 1095 (1974).
    [Crossref] [PubMed]
  20. D. Regan and C. W. Tyler, J. Opt. Soc. Am. 61, 1414 (1971).
    [Crossref] [PubMed]
  21. G. J. C. van der Horst, C. M. M. de Weert, and M. A. Bouman, J. Opt. Soc. Am. 57, 1260 (1967).
    [Crossref] [PubMed]
  22. R. Hilz and C. R. Cavonius, J. Opt. Soc. Am. 60, 273 (1970).
    [Crossref] [PubMed]
  23. G. Wald, J. Opt. Soc. Am. 57, 1289 (1967).
    [Crossref] [PubMed]
  24. H. de Lange, J. Opt. Soc. Am. 48, 784 (1958).
    [Crossref]
  25. H. E. Ives, Philos. Mag. 24, 845 (1912).
  26. H. G. Sperling and C. L. Jolliffe, J. Opt. Soc. Am. 55, 191 (1965).
    [Crossref]
  27. H. R. Blackwell, in Handbook of Sensory Physiology, Vol. VII/4, edited by D. Jameson and L. M. Hurvich (Springer-Verlag, Berlin, 1972), Chap. 4.
  28. J. Krauskopf and J. D. Mollon, J. Physiol. 219, 611 (1971).
  29. H. B. Barlow, J. Physiol. 141, 337 (1958).
  30. C. Enroth-Cugell and R. M. Shapley, J. Physiol. 233, 271 (1973).
  31. G. S. Brindley, J. Physiol. 122, 332 (1953).
  32. S. L. Guth and H. R. Lodge, J. Opt. Soc. Am. 63, 450 (1973).
    [Crossref] [PubMed]
  33. D. P. M. Northmore and W. R. A. Muntz, Vision Res. 14, 503 (1974).
    [Crossref]
  34. P. Padmos and D. V. Norren, Vision Res. 15, 1103 (1975).
    [Crossref] [PubMed]
  35. P. Gouras, J. Physiol. 199, 533 (1968).
  36. P. Gouras, Vision Res. Suppl. 3, 397 (1971).
    [Crossref]

1975 (2)

P. E. King-Smith, Nature 255, 69 (1975).
[Crossref] [PubMed]

P. Padmos and D. V. Norren, Vision Res. 15, 1103 (1975).
[Crossref] [PubMed]

1974 (3)

D. P. M. Northmore and W. R. A. Muntz, Vision Res. 14, 503 (1974).
[Crossref]

L. Kerr, Vision Res. 14, 1095 (1974).
[Crossref] [PubMed]

P. E. King-Smith and J. R. Webb, Vision Res. 14, 421 (1974).
[Crossref] [PubMed]

1973 (2)

C. Enroth-Cugell and R. M. Shapley, J. Physiol. 233, 271 (1973).

S. L. Guth and H. R. Lodge, J. Opt. Soc. Am. 63, 450 (1973).
[Crossref] [PubMed]

1972 (1)

G. B. Rollman and J. Nachmias, Percept. Psychophys. 12, 309 (1972).
[Crossref]

1971 (5)

H. G. Sperling and R. S. Harwerth, Science 172, 180 (1971).
[Crossref] [PubMed]

D. E. Mitchell and W. A. H. Rushton, Vision Res. 11, 1045 (1971).
[Crossref] [PubMed]

P. Gouras, Vision Res. Suppl. 3, 397 (1971).
[Crossref]

D. Regan and C. W. Tyler, J. Opt. Soc. Am. 61, 1414 (1971).
[Crossref] [PubMed]

J. Krauskopf and J. D. Mollon, J. Physiol. 219, 611 (1971).

1970 (2)

1969 (1)

S. L. Guth, N. J. Donley, and R. T. Marrocco, Vision Res. 9, 537 (1969).
[Crossref] [PubMed]

1968 (1)

P. Gouras, J. Physiol. 199, 533 (1968).

1967 (2)

1966 (2)

1965 (1)

1964 (3)

R. M. Boynton, M. Ikeda, and W. S. Stiles, Vision Res. 4, 87 (1964).
[Crossref] [PubMed]

W. Marks, W. H. Dobelle, and E. F. MacNichol, Science 143, 1181 (1964).
[Crossref] [PubMed]

P. K. Brown and G. Wald, Science 144, 45 (1964).
[Crossref] [PubMed]

1959 (1)

W. S. Stiles, Proc. Natn. Acad. Sci. 75, 100 (1959).
[Crossref]

1958 (2)

H. B. Barlow, J. Physiol. 141, 337 (1958).

H. de Lange, J. Opt. Soc. Am. 48, 784 (1958).
[Crossref]

1957 (1)

L. M. Hurvich and D. Jameson, Psychol. Rev. 64, 384 (1957).
[Crossref]

1953 (1)

G. S. Brindley, J. Physiol. 122, 332 (1953).

1949 (1)

W. S. Stiles, Docum. Ophthal. 3, 138 (1949).
[Crossref]

1939 (1)

W. S. Stiles, Proc. R. Soc. B 127, 67 (1939).
[Crossref]

1912 (1)

H. E. Ives, Philos. Mag. 24, 845 (1912).

Abramov, I.

Barlow, H. B.

H. B. Barlow, J. Physiol. 141, 337 (1958).

Blackwell, H. R.

H. R. Blackwell, in Handbook of Sensory Physiology, Vol. VII/4, edited by D. Jameson and L. M. Hurvich (Springer-Verlag, Berlin, 1972), Chap. 4.

Bouman, M. A.

Boynton, R. M.

R. M. Boynton and D. N. Whitten, Science 170, 1423 (1970).
[Crossref] [PubMed]

R. M. Boynton, M. Ikeda, and W. S. Stiles, Vision Res. 4, 87 (1964).
[Crossref] [PubMed]

Brindley, G. S.

G. S. Brindley, J. Physiol. 122, 332 (1953).

Brown, P. K.

P. K. Brown and G. Wald, Science 144, 45 (1964).
[Crossref] [PubMed]

Cavonius, C. R.

de Lange, H.

De Valois, R. L.

de Weert, C. M. M.

Dobelle, W. H.

W. Marks, W. H. Dobelle, and E. F. MacNichol, Science 143, 1181 (1964).
[Crossref] [PubMed]

Donley, N. J.

S. L. Guth, N. J. Donley, and R. T. Marrocco, Vision Res. 9, 537 (1969).
[Crossref] [PubMed]

Enoch, J. M.

J. M. Enoch, in Handbook of sensory Physiology, Vol. VII/4, edited by D. Jameson and L. M. Hurvich (Springer-Verlag, Berlin, 1972), Chap. 21.

Enroth-Cugell, C.

C. Enroth-Cugell and R. M. Shapley, J. Physiol. 233, 271 (1973).

Gouras, P.

P. Gouras, Vision Res. Suppl. 3, 397 (1971).
[Crossref]

P. Gouras, J. Physiol. 199, 533 (1968).

Guth, S. L.

S. L. Guth and H. R. Lodge, J. Opt. Soc. Am. 63, 450 (1973).
[Crossref] [PubMed]

S. L. Guth, N. J. Donley, and R. T. Marrocco, Vision Res. 9, 537 (1969).
[Crossref] [PubMed]

Harwerth, R. S.

H. G. Sperling and R. S. Harwerth, Science 172, 180 (1971).
[Crossref] [PubMed]

Hilz, R.

Hubel, D. H.

T. N. Wiesel and D. H. Hubel, J. Neurophysiol. 29, 1115 (1966).
[PubMed]

Hurvich, L. M.

L. M. Hurvich and D. Jameson, Psychol. Rev. 64, 384 (1957).
[Crossref]

Ikeda, M.

R. M. Boynton, M. Ikeda, and W. S. Stiles, Vision Res. 4, 87 (1964).
[Crossref] [PubMed]

Ives, H. E.

H. E. Ives, Philos. Mag. 24, 845 (1912).

Jacobs, G. H.

Jameson, D.

L. M. Hurvich and D. Jameson, Psychol. Rev. 64, 384 (1957).
[Crossref]

Jolliffe, C. L.

Kerr, L.

L. Kerr, Vision Res. 14, 1095 (1974).
[Crossref] [PubMed]

King-Smith, P. E.

P. E. King-Smith, Nature 255, 69 (1975).
[Crossref] [PubMed]

P. E. King-Smith and J. R. Webb, Vision Res. 14, 421 (1974).
[Crossref] [PubMed]

Krauskopf, J.

J. Krauskopf and J. D. Mollon, J. Physiol. 219, 611 (1971).

Lodge, H. R.

MacNichol, E. F.

W. Marks, W. H. Dobelle, and E. F. MacNichol, Science 143, 1181 (1964).
[Crossref] [PubMed]

Marks, W.

W. Marks, W. H. Dobelle, and E. F. MacNichol, Science 143, 1181 (1964).
[Crossref] [PubMed]

Marrocco, R. T.

S. L. Guth, N. J. Donley, and R. T. Marrocco, Vision Res. 9, 537 (1969).
[Crossref] [PubMed]

Mitchell, D. E.

D. E. Mitchell and W. A. H. Rushton, Vision Res. 11, 1045 (1971).
[Crossref] [PubMed]

Mollon, J. D.

J. Krauskopf and J. D. Mollon, J. Physiol. 219, 611 (1971).

Muntz, W. R. A.

D. P. M. Northmore and W. R. A. Muntz, Vision Res. 14, 503 (1974).
[Crossref]

Nachmias, J.

G. B. Rollman and J. Nachmias, Percept. Psychophys. 12, 309 (1972).
[Crossref]

Norren, D. V.

P. Padmos and D. V. Norren, Vision Res. 15, 1103 (1975).
[Crossref] [PubMed]

Northmore, D. P. M.

D. P. M. Northmore and W. R. A. Muntz, Vision Res. 14, 503 (1974).
[Crossref]

Padmos, P.

P. Padmos and D. V. Norren, Vision Res. 15, 1103 (1975).
[Crossref] [PubMed]

Regan, D.

Rollman, G. B.

G. B. Rollman and J. Nachmias, Percept. Psychophys. 12, 309 (1972).
[Crossref]

Rushton, W. A. H.

D. E. Mitchell and W. A. H. Rushton, Vision Res. 11, 1045 (1971).
[Crossref] [PubMed]

Shapley, R. M.

C. Enroth-Cugell and R. M. Shapley, J. Physiol. 233, 271 (1973).

Sperling, H. G.

Stiles, W. S.

R. M. Boynton, M. Ikeda, and W. S. Stiles, Vision Res. 4, 87 (1964).
[Crossref] [PubMed]

W. S. Stiles, Proc. Natn. Acad. Sci. 75, 100 (1959).
[Crossref]

W. S. Stiles, Docum. Ophthal. 3, 138 (1949).
[Crossref]

W. S. Stiles, Proc. R. Soc. B 127, 67 (1939).
[Crossref]

G. Wyszecki and W. S. Stiles, Colour Science (Wiley, New York, 1967), p. 211.

Tyler, C. W.

van der Horst, G. J. C.

Wald, G.

Webb, J. R.

P. E. King-Smith and J. R. Webb, Vision Res. 14, 421 (1974).
[Crossref] [PubMed]

Whitten, D. N.

R. M. Boynton and D. N. Whitten, Science 170, 1423 (1970).
[Crossref] [PubMed]

Wiesel, T. N.

T. N. Wiesel and D. H. Hubel, J. Neurophysiol. 29, 1115 (1966).
[PubMed]

Wyszecki, G.

G. Wyszecki and W. S. Stiles, Colour Science (Wiley, New York, 1967), p. 211.

Docum. Ophthal. (1)

W. S. Stiles, Docum. Ophthal. 3, 138 (1949).
[Crossref]

J. Neurophysiol. (1)

T. N. Wiesel and D. H. Hubel, J. Neurophysiol. 29, 1115 (1966).
[PubMed]

J. Opt. Soc. Am. (8)

J. Physiol. (5)

P. Gouras, J. Physiol. 199, 533 (1968).

J. Krauskopf and J. D. Mollon, J. Physiol. 219, 611 (1971).

H. B. Barlow, J. Physiol. 141, 337 (1958).

C. Enroth-Cugell and R. M. Shapley, J. Physiol. 233, 271 (1973).

G. S. Brindley, J. Physiol. 122, 332 (1953).

Nature (1)

P. E. King-Smith, Nature 255, 69 (1975).
[Crossref] [PubMed]

Percept. Psychophys. (1)

G. B. Rollman and J. Nachmias, Percept. Psychophys. 12, 309 (1972).
[Crossref]

Philos. Mag. (1)

H. E. Ives, Philos. Mag. 24, 845 (1912).

Proc. Natn. Acad. Sci. (1)

W. S. Stiles, Proc. Natn. Acad. Sci. 75, 100 (1959).
[Crossref]

Proc. R. Soc. B (1)

W. S. Stiles, Proc. R. Soc. B 127, 67 (1939).
[Crossref]

Psychol. Rev. (1)

L. M. Hurvich and D. Jameson, Psychol. Rev. 64, 384 (1957).
[Crossref]

Science (4)

R. M. Boynton and D. N. Whitten, Science 170, 1423 (1970).
[Crossref] [PubMed]

W. Marks, W. H. Dobelle, and E. F. MacNichol, Science 143, 1181 (1964).
[Crossref] [PubMed]

P. K. Brown and G. Wald, Science 144, 45 (1964).
[Crossref] [PubMed]

H. G. Sperling and R. S. Harwerth, Science 172, 180 (1971).
[Crossref] [PubMed]

Vision Res. (7)

P. E. King-Smith and J. R. Webb, Vision Res. 14, 421 (1974).
[Crossref] [PubMed]

R. M. Boynton, M. Ikeda, and W. S. Stiles, Vision Res. 4, 87 (1964).
[Crossref] [PubMed]

S. L. Guth, N. J. Donley, and R. T. Marrocco, Vision Res. 9, 537 (1969).
[Crossref] [PubMed]

D. E. Mitchell and W. A. H. Rushton, Vision Res. 11, 1045 (1971).
[Crossref] [PubMed]

L. Kerr, Vision Res. 14, 1095 (1974).
[Crossref] [PubMed]

D. P. M. Northmore and W. R. A. Muntz, Vision Res. 14, 503 (1974).
[Crossref]

P. Padmos and D. V. Norren, Vision Res. 15, 1103 (1975).
[Crossref] [PubMed]

Vision Res. Suppl. (1)

P. Gouras, Vision Res. Suppl. 3, 397 (1971).
[Crossref]

Other (3)

H. R. Blackwell, in Handbook of Sensory Physiology, Vol. VII/4, edited by D. Jameson and L. M. Hurvich (Springer-Verlag, Berlin, 1972), Chap. 4.

G. Wyszecki and W. S. Stiles, Colour Science (Wiley, New York, 1967), p. 211.

J. M. Enoch, in Handbook of sensory Physiology, Vol. VII/4, edited by D. Jameson and L. M. Hurvich (Springer-Verlag, Berlin, 1972), Chap. 21.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

FIG. 1
FIG. 1

Relation between detection sensitivity and the spectral fundamentals. Circles correspond to the spectral sensitivity for detecting 1° 200 ms test flashes on a 3200 °K white background of 1000 td. The continuous curves represent the sensitivities of the short-wave (S), medium-wave (M), and long-wave (L) fundamentals determined by the photopic saturation method on the same subject (E. K-S). The three fundamentals have been shifted vertically to match the detection sensitivity data in the short, middle, and long wavelength regions, respectively. In this and succeeding figures, sensitivity is expressed as the reciprocal of threshold intensity measured in quanta s−1 deg−2.

FIG. 2
FIG. 2

Comparison between the spectral sensitivities for detecting a test flash (circles) and for determining the color of the test flash (dashed line). Sensitivities have been averaged for the two observers and are for 1° 200 ms test flashes on a 1000 td white background.

FIG. 3
FIG. 3

Two-alternative forced-choice experiments comparing the discrimination of spectral colors from white (lower graphs) with the detection of the corresponding spectral and white stimuli (upper graphs). The subject E. K-S viewed the 1° 200 ms test flashes on a 1000 td white background. Test flash colors: W, white; R, red (664 nm); B, blue (462 nm); Y, yellow (584 nm). See text for further details.

FIG. 4
FIG. 4

Spectral sensitivity curves for detecting large and small, short and long test flashes on a 1000 td white background. Mean results for the two observers. The insets represent schematically the size and time course of the corresponding test flashes: ○, 1°, 200 ms; □, 1°, 10 ms; ●, 0.05°, 200 ms; ■, 0.05°, 10 ms.

FIG. 5
FIG. 5

Comparison between the spectral sensitivity for detecting 1° 10 ms test flashes on a 1000 td white background (□) with the sensitivity of the luminance system determined by flicker methods (continuous curves marked L). The thin line was derived by flicker photometry on a dark background, while the thick line was determined from thresholds for detecting 25 Hz flicker on the 1000 td white background; both curves have been shifted vertically to match the squares at about 555 nm. The subject was E. K-S.

FIG. 6
FIG. 6

Comparison between the spectral sensitivities for detecting 1° test flashes on a 1000 td white background (symbols) with the deduced sensitivities of the luminance system (L, continuous curves) and of the opponent-color systems (C, dashed curves). Circles and upper curves refer to 200 ms test flashes while squares and lower curves refer to 10 ms test flashes. The results are an average for the two subjects. See text for further details.

FIG. 7
FIG. 7

Comparison between the spectral sensitivities for detecting 0.05° test flashes on a 1000 td white background (symbols) with the deduced sensitivities of the luminance system (L, continuous curves) and of the opponent-color systems (C, dashed curves), Circles and upper curves refer to 200 ms flashes while squares and lower curves refer to 10 ms test flashes. The subject was E. K-S. See text for further details.

FIG. 8
FIG. 8

Comparison between the spectral sensitivities for detecting 1° test flashes on a dark background (symbols) with the deduced sensitivities of the luminance system (L, continuous curves) and of the opponent-color systems (C, dashed curves). Circles and upper curves refer to 200 ms flashes while squares and lower curves refer to 10 ms test flashes. The subject was E. K-S. See text for further details.

FIG. 9
FIG. 9

Threshold-duration plots for a variety of test stimuli on a 1000 td white background. The color and size of the test stimuli are indicated to the right of each plot. The sets of data have been displaced vertically for clarity. Lines of slope −1 and 0 have been drawn through the data points of shortest and longest duration, respectively; the intersection of these two lines is a measure of temporal integration. The subject was E. K-S.

FIG. 10
FIG. 10

Integration times for 1° (○) and 0.05° (●) test flashes on a 1000 td white background. Integration times have been derived from the ratio of spectral sensitivities for 200 and 10 ms test flashes as described in the text. The results for the two subjects are shown separately as indicated.

FIG. 11
FIG. 11

Thresholds plotted as a function of diameter for a variety of test stimuli on a 1000 td white background. The color and duration of the test stimuli are indicated to the right of each plot. The sets of data have been displaced vertically for clarity. Note that the log scale for the abscissa has been expanded by a factor of two compared with the log scale for the ordinate. Lines of slope −2 and 0 have been drawn through the data points of smallest and largest diameter, respectively; the intersection of these two lines is a measure of spatial integration. The subject was E. K-S.

FIG. 12
FIG. 12

Spatial integration for 200 ms (○) and 10 ms (□) test flashes on a 1000 td white background. Spatial integration has been derived from the ratio of spectral sensitivities for 1° and 0.05° test flashes as described in the text. The results for the two subjects are shown separately as indicated.