Abstract

Red–green color mixture equations were measured in 10 color-normal observers for fields of view varying from 30′ to 10°. The G/R mixture decreases continuously as field size is increased. The data are consistent with the interpretation that the cone visual photopigments decrease exponentially in effective optical density as the field size is increased.

© 1976 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Hering, “Ueber den Einfluss der Macula Lutea auf Spectrale Farbengleichungen,” Pfluegers Arch. Gesamte Physiol. Menschen Tiere 54, 277–312 (1893).
    [CrossRef]
  2. R. G. Horner and E. T. Purslow, “Dependence of anomaloscope matching on viewing distance or field size,” Nature 160, 23–24 (1947); Nature 161, 484 (1948).
    [CrossRef] [PubMed]
  3. In contrast, studies of chromatic cancellation [S. S. Stevens, “The relation of saturation to the size of the retinal image,” Am. J. Psychol. 46, 70–79 (1934); M. M. Connors and J. A. S. Kinney, “Relative red–green sensitivity as a function of relative position,” J. Opt. Soc. Am. 52, 81–84 (1962)] and other spectral sensitivity studies with change in retinal position may additionally be affected by variation in the relative populations and sensitivities of the receptor classes.
    [CrossRef]
  4. J. Pokorny, V. C. Smith, and S. Starr, “Variability of Color Mixture Data II: The effect of viewing field size on the unit coordinates,” Vision Res. (in press).
  5. W. S. Stiles, Interim report to the CIE, Zurich 1955, on the N. P. L. investigation of color matching [Optica Acta 2, 168–176 (1955)].
  6. W. S. Stiles and J. M. Burch, N. P. L. color-matching investigation: Final report (1958) [Optica Acta 6, 1–26 (1959)].
  7. H. D. Baker, “Single-variable anomaloscope matches during recovery from artificial red–blindness,” J. Opt. Soc. Am. 56, 686–689 (1966).
    [CrossRef] [PubMed]
  8. M. Alpern and S. Torii, “The luminosity curve of the protanomalous fovea,” J. Gen. Physiol. 52, 717–737 (1968).
  9. J. D. Moreland and W. B. Young, “A new anomaloscope employing interference filters,” Mod. Probl. Ophthal. 13, 47–55 (1974).
  10. A. Linksz, An essay on color vision (Grune and Stratton, New York, 1964).
  11. I. Schmidt, “Some problems related to testing color vision with the Nagel anomaloscope,” J. Opt. Soc. Am. 45, 514–522 (1955); G. H. M. Waaler, “Über die Erblichkeitsverhältnisse der verschiedenen Arten von angeborener Rotgrünblindheit,” Z. Abstamm. Vererbungsl. 45, 279–233 (1927); M. P. Willis and D. Farnsworth, “Comparative evaluation of anomaloscopes,” , U.S. Naval Medical Research Laboratory (1952).
    [CrossRef] [PubMed]
  12. G. Wyszecki and W. S. Stiles, Color Science (Wiley, New York, 1967).
  13. J. D. Moreland, “Inert pigments and the variability of anomaloscopic matches,” Am. J. Optom. Arch. Am. Acad. Optom. 49, 735–741 (1972).
    [CrossRef] [PubMed]
  14. J. J. Vos, “Literature review of human macular absorption in the visible and its consequences for the cone receptor primaries,” , Soesterberg (1972).
  15. F. S. Said and R. A. Weale, “The variation with age of the spectral transmissivity of the living human crystalline lens,” Gerontologia 3, 213–231 (1959).
    [CrossRef] [PubMed]
  16. S. Coren and J. S. Girgus, “Density of human lens pigmentation: in vivo measurements over an extended age range.” Vision Res. 12, 343–346, (1972).
    [CrossRef] [PubMed]

1974 (1)

J. D. Moreland and W. B. Young, “A new anomaloscope employing interference filters,” Mod. Probl. Ophthal. 13, 47–55 (1974).

1972 (2)

J. D. Moreland, “Inert pigments and the variability of anomaloscopic matches,” Am. J. Optom. Arch. Am. Acad. Optom. 49, 735–741 (1972).
[CrossRef] [PubMed]

S. Coren and J. S. Girgus, “Density of human lens pigmentation: in vivo measurements over an extended age range.” Vision Res. 12, 343–346, (1972).
[CrossRef] [PubMed]

1968 (1)

M. Alpern and S. Torii, “The luminosity curve of the protanomalous fovea,” J. Gen. Physiol. 52, 717–737 (1968).

1966 (1)

1959 (1)

F. S. Said and R. A. Weale, “The variation with age of the spectral transmissivity of the living human crystalline lens,” Gerontologia 3, 213–231 (1959).
[CrossRef] [PubMed]

1955 (1)

1947 (1)

R. G. Horner and E. T. Purslow, “Dependence of anomaloscope matching on viewing distance or field size,” Nature 160, 23–24 (1947); Nature 161, 484 (1948).
[CrossRef] [PubMed]

1934 (1)

In contrast, studies of chromatic cancellation [S. S. Stevens, “The relation of saturation to the size of the retinal image,” Am. J. Psychol. 46, 70–79 (1934); M. M. Connors and J. A. S. Kinney, “Relative red–green sensitivity as a function of relative position,” J. Opt. Soc. Am. 52, 81–84 (1962)] and other spectral sensitivity studies with change in retinal position may additionally be affected by variation in the relative populations and sensitivities of the receptor classes.
[CrossRef]

1893 (1)

E. Hering, “Ueber den Einfluss der Macula Lutea auf Spectrale Farbengleichungen,” Pfluegers Arch. Gesamte Physiol. Menschen Tiere 54, 277–312 (1893).
[CrossRef]

Alpern, M.

M. Alpern and S. Torii, “The luminosity curve of the protanomalous fovea,” J. Gen. Physiol. 52, 717–737 (1968).

Baker, H. D.

Burch, J. M.

W. S. Stiles and J. M. Burch, N. P. L. color-matching investigation: Final report (1958) [Optica Acta 6, 1–26 (1959)].

Coren, S.

S. Coren and J. S. Girgus, “Density of human lens pigmentation: in vivo measurements over an extended age range.” Vision Res. 12, 343–346, (1972).
[CrossRef] [PubMed]

Girgus, J. S.

S. Coren and J. S. Girgus, “Density of human lens pigmentation: in vivo measurements over an extended age range.” Vision Res. 12, 343–346, (1972).
[CrossRef] [PubMed]

Hering, E.

E. Hering, “Ueber den Einfluss der Macula Lutea auf Spectrale Farbengleichungen,” Pfluegers Arch. Gesamte Physiol. Menschen Tiere 54, 277–312 (1893).
[CrossRef]

Horner, R. G.

R. G. Horner and E. T. Purslow, “Dependence of anomaloscope matching on viewing distance or field size,” Nature 160, 23–24 (1947); Nature 161, 484 (1948).
[CrossRef] [PubMed]

Linksz, A.

A. Linksz, An essay on color vision (Grune and Stratton, New York, 1964).

Moreland, J. D.

J. D. Moreland and W. B. Young, “A new anomaloscope employing interference filters,” Mod. Probl. Ophthal. 13, 47–55 (1974).

J. D. Moreland, “Inert pigments and the variability of anomaloscopic matches,” Am. J. Optom. Arch. Am. Acad. Optom. 49, 735–741 (1972).
[CrossRef] [PubMed]

Pokorny, J.

J. Pokorny, V. C. Smith, and S. Starr, “Variability of Color Mixture Data II: The effect of viewing field size on the unit coordinates,” Vision Res. (in press).

Purslow, E. T.

R. G. Horner and E. T. Purslow, “Dependence of anomaloscope matching on viewing distance or field size,” Nature 160, 23–24 (1947); Nature 161, 484 (1948).
[CrossRef] [PubMed]

Said, F. S.

F. S. Said and R. A. Weale, “The variation with age of the spectral transmissivity of the living human crystalline lens,” Gerontologia 3, 213–231 (1959).
[CrossRef] [PubMed]

Schmidt, I.

Smith, V. C.

J. Pokorny, V. C. Smith, and S. Starr, “Variability of Color Mixture Data II: The effect of viewing field size on the unit coordinates,” Vision Res. (in press).

Starr, S.

J. Pokorny, V. C. Smith, and S. Starr, “Variability of Color Mixture Data II: The effect of viewing field size on the unit coordinates,” Vision Res. (in press).

Stevens, S. S.

In contrast, studies of chromatic cancellation [S. S. Stevens, “The relation of saturation to the size of the retinal image,” Am. J. Psychol. 46, 70–79 (1934); M. M. Connors and J. A. S. Kinney, “Relative red–green sensitivity as a function of relative position,” J. Opt. Soc. Am. 52, 81–84 (1962)] and other spectral sensitivity studies with change in retinal position may additionally be affected by variation in the relative populations and sensitivities of the receptor classes.
[CrossRef]

Stiles, W. S.

W. S. Stiles and J. M. Burch, N. P. L. color-matching investigation: Final report (1958) [Optica Acta 6, 1–26 (1959)].

W. S. Stiles, Interim report to the CIE, Zurich 1955, on the N. P. L. investigation of color matching [Optica Acta 2, 168–176 (1955)].

G. Wyszecki and W. S. Stiles, Color Science (Wiley, New York, 1967).

Torii, S.

M. Alpern and S. Torii, “The luminosity curve of the protanomalous fovea,” J. Gen. Physiol. 52, 717–737 (1968).

Vos, J. J.

J. J. Vos, “Literature review of human macular absorption in the visible and its consequences for the cone receptor primaries,” , Soesterberg (1972).

Weale, R. A.

F. S. Said and R. A. Weale, “The variation with age of the spectral transmissivity of the living human crystalline lens,” Gerontologia 3, 213–231 (1959).
[CrossRef] [PubMed]

Wyszecki, G.

G. Wyszecki and W. S. Stiles, Color Science (Wiley, New York, 1967).

Young, W. B.

J. D. Moreland and W. B. Young, “A new anomaloscope employing interference filters,” Mod. Probl. Ophthal. 13, 47–55 (1974).

Am. J. Optom. Arch. Am. Acad. Optom. (1)

J. D. Moreland, “Inert pigments and the variability of anomaloscopic matches,” Am. J. Optom. Arch. Am. Acad. Optom. 49, 735–741 (1972).
[CrossRef] [PubMed]

Am. J. Psychol. (1)

In contrast, studies of chromatic cancellation [S. S. Stevens, “The relation of saturation to the size of the retinal image,” Am. J. Psychol. 46, 70–79 (1934); M. M. Connors and J. A. S. Kinney, “Relative red–green sensitivity as a function of relative position,” J. Opt. Soc. Am. 52, 81–84 (1962)] and other spectral sensitivity studies with change in retinal position may additionally be affected by variation in the relative populations and sensitivities of the receptor classes.
[CrossRef]

Gerontologia (1)

F. S. Said and R. A. Weale, “The variation with age of the spectral transmissivity of the living human crystalline lens,” Gerontologia 3, 213–231 (1959).
[CrossRef] [PubMed]

J. Gen. Physiol. (1)

M. Alpern and S. Torii, “The luminosity curve of the protanomalous fovea,” J. Gen. Physiol. 52, 717–737 (1968).

J. Opt. Soc. Am. (2)

Mod. Probl. Ophthal. (1)

J. D. Moreland and W. B. Young, “A new anomaloscope employing interference filters,” Mod. Probl. Ophthal. 13, 47–55 (1974).

Nature (1)

R. G. Horner and E. T. Purslow, “Dependence of anomaloscope matching on viewing distance or field size,” Nature 160, 23–24 (1947); Nature 161, 484 (1948).
[CrossRef] [PubMed]

Pfluegers Arch. Gesamte Physiol. Menschen Tiere (1)

E. Hering, “Ueber den Einfluss der Macula Lutea auf Spectrale Farbengleichungen,” Pfluegers Arch. Gesamte Physiol. Menschen Tiere 54, 277–312 (1893).
[CrossRef]

Vision Res. (1)

S. Coren and J. S. Girgus, “Density of human lens pigmentation: in vivo measurements over an extended age range.” Vision Res. 12, 343–346, (1972).
[CrossRef] [PubMed]

Other (6)

J. J. Vos, “Literature review of human macular absorption in the visible and its consequences for the cone receptor primaries,” , Soesterberg (1972).

A. Linksz, An essay on color vision (Grune and Stratton, New York, 1964).

G. Wyszecki and W. S. Stiles, Color Science (Wiley, New York, 1967).

J. Pokorny, V. C. Smith, and S. Starr, “Variability of Color Mixture Data II: The effect of viewing field size on the unit coordinates,” Vision Res. (in press).

W. S. Stiles, Interim report to the CIE, Zurich 1955, on the N. P. L. investigation of color matching [Optica Acta 2, 168–176 (1955)].

W. S. Stiles and J. M. Burch, N. P. L. color-matching investigation: Final report (1958) [Optica Acta 6, 1–26 (1959)].

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

FIG. 1
FIG. 1

Log G/R ratios for ten observers plotted as a function of the field of view.

FIG. 2
FIG. 2

Recovery of a match after bleach. Upper panel shows fraction red as a function of time for a 2° field. Lower panel shows recoveries for an 8° field. The solid line shows the midpoint of the steady state match (experiment 1). The arrows show the predicted fraction red for dilute pigments. The upper 3 traces are red runs; the lower are green runs.

FIG. 3
FIG. 3

Average log G/R ratios for ten observers (circles, and error bars, ± one standard deviation) compared with theoretical prediction (solid line).

Tables (1)

Tables Icon

TABLE I Comparison of 2° matches at 589 and 570 nm.