Abstract

The spectra of Cs iii, Ba iv, and La v have been observed in a sliding spark discharge on the 10.7 m normal-incidence vacuum spectrograph at NBS. Analysis of the observations of Cs iii and La v has yielded the energy levels of the 5s 25p5 and 5s5p6 configurations and nearly all levels of the 5s 25p 45d and 5s 25p 46s configurations that can combine with the 5s 25p5 2P° ground term. The observations for Ba iv have yielded the levels of the 5s 25p5 and 5s5p6 configurations. The 5s 25p 45d + 5s 25p 46s + 5s5p6 levels of Cs iii and La v have been theoretically interpreted, with configuration interaction included. The energy parameters determined from a least-squares fit to the observed level values are compared with Hartree-Fock calculations. The ionization energies are found to be 33.38 ± 0.25 eV for Cs iii, 47.1 ± 0.6 eV for Ba iv, and 61.6 ± 0.6 eV for La v. By extrapolating these values the ionization energy of Ce vi is estimated as 77.6 ± 1.2 eV.

© 1976 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. A. Fitzgerald and R. A. Sawyer, “The Fifty-Three Electron Spectra of Caesium and Barium: Cs iii and Ba iv,” Phys. Rev. 46, 576–580 (1934).
    [Crossref]
  2. C. E. Moore, Atomic Energy Levels, Vol. III, Natl. Bur. Std. (U.S.) Circ. No. 467 (U. S. GPO, Washington, D.C., 1958).
  3. G. L. Epstein and J. Reader, “Resonance Lines and 5p5 2P° Splitting of La v,” J. Opt. Soc. Am. 60, 712 (1970).
  4. J. Reader and G. L. Epstein, “Resonance Lines of Cs ii, Ba iii, and La iv,” J. Opt. Soc. Am. 65, 638–641 (1975).
    [Crossref]
  5. C. Froese, “Numerical Solution of the Hartree-Fock Equations,” Can. J. Phys. 41, 1895–1910 (1963);and C. Froese Fischer and M. Wilson, “Programs for Atomic Structure Calculations,” (available from Clearinghouse for Federal Scientific and Technical Information, National Bureau of Standards, U. S. Department of Commerce, Springfield, Va. 22151).
    [Crossref]
  6. J. Reader and G. L. Epstein, “Analysis of the Spectrum of Doubly Ionized Rubidium (Rb ii),” J. Opt. Soc. Am. 62, 1467–1476 (1972).
    [Crossref]
  7. For a summary of work done on the nsnp6-ns2np4nd interaction in a number of ions, see J. Reader, “Position of the sp6configuration in the neutral halogens,” J. Opt. Soc. Am. 64, 1017–1018 (1974).
    [Crossref]
  8. B. Edlén, “Atomic Spectra,” in Handbuch der Physik, Vol. 27, edited by S. Flügge (Springer, Berlin, 1964), p. 116.
  9. J. O. Ekberg, J. E. Hansen, and J. Reader, “Analysis of the Spectrum of Five-Times- Ionized Zirconium (Zr vi),” J. Opt. Soc. Am. 62, 1134–1139 (1972).
    [Crossref]
  10. J. O. Ekberg, J. E. Hansen, and J. Reader, “Analysis of the Spectrum of Seven-Times-Ionized Molybdenum (Mo viii) and Isoelectronic Comparison of the Spectra Y v-Mo viii,” J. Opt. Soc. Am. 62, 1143–1148 (1972).
    [Crossref]
  11. J. Reader and J. O. Ekberg, “Resonance Lines of Ce v and Ce vi,” J. Opt. Soc. Am. 62, 464 (1972).
    [Crossref]
  12. L. Minnhagen, “The energy levels of neutral atomic iodine,” Ark. Fys.  21, 415–478 (1962).
  13. R. D. Cowan, L. J. Radziemski, and V. Kaufman, “Effect of continuum configuration interaction on the position of sp6in neutral chlorine and other halogens,” J. Opt. Soc. Am. 64, 1474–1478 (1974).
    [Crossref]
  14. E. Luc-Koenig, C. Morillon, and J. Vergés, “Etude Expérimentale et Théorique de l’Iode Atomique,” Phys. Scripta 12, 199–219 (1975).
    [Crossref]

1975 (2)

J. Reader and G. L. Epstein, “Resonance Lines of Cs ii, Ba iii, and La iv,” J. Opt. Soc. Am. 65, 638–641 (1975).
[Crossref]

E. Luc-Koenig, C. Morillon, and J. Vergés, “Etude Expérimentale et Théorique de l’Iode Atomique,” Phys. Scripta 12, 199–219 (1975).
[Crossref]

1974 (2)

1972 (4)

1970 (1)

G. L. Epstein and J. Reader, “Resonance Lines and 5p5 2P° Splitting of La v,” J. Opt. Soc. Am. 60, 712 (1970).

1963 (1)

C. Froese, “Numerical Solution of the Hartree-Fock Equations,” Can. J. Phys. 41, 1895–1910 (1963);and C. Froese Fischer and M. Wilson, “Programs for Atomic Structure Calculations,” (available from Clearinghouse for Federal Scientific and Technical Information, National Bureau of Standards, U. S. Department of Commerce, Springfield, Va. 22151).
[Crossref]

1962 (1)

L. Minnhagen, “The energy levels of neutral atomic iodine,” Ark. Fys.  21, 415–478 (1962).

1934 (1)

M. A. Fitzgerald and R. A. Sawyer, “The Fifty-Three Electron Spectra of Caesium and Barium: Cs iii and Ba iv,” Phys. Rev. 46, 576–580 (1934).
[Crossref]

Cowan, R. D.

Edlén, B.

B. Edlén, “Atomic Spectra,” in Handbuch der Physik, Vol. 27, edited by S. Flügge (Springer, Berlin, 1964), p. 116.

Ekberg, J. O.

Epstein, G. L.

Fitzgerald, M. A.

M. A. Fitzgerald and R. A. Sawyer, “The Fifty-Three Electron Spectra of Caesium and Barium: Cs iii and Ba iv,” Phys. Rev. 46, 576–580 (1934).
[Crossref]

Froese, C.

C. Froese, “Numerical Solution of the Hartree-Fock Equations,” Can. J. Phys. 41, 1895–1910 (1963);and C. Froese Fischer and M. Wilson, “Programs for Atomic Structure Calculations,” (available from Clearinghouse for Federal Scientific and Technical Information, National Bureau of Standards, U. S. Department of Commerce, Springfield, Va. 22151).
[Crossref]

Hansen, J. E.

Kaufman, V.

Luc-Koenig, E.

E. Luc-Koenig, C. Morillon, and J. Vergés, “Etude Expérimentale et Théorique de l’Iode Atomique,” Phys. Scripta 12, 199–219 (1975).
[Crossref]

Minnhagen, L.

L. Minnhagen, “The energy levels of neutral atomic iodine,” Ark. Fys.  21, 415–478 (1962).

Moore, C. E.

C. E. Moore, Atomic Energy Levels, Vol. III, Natl. Bur. Std. (U.S.) Circ. No. 467 (U. S. GPO, Washington, D.C., 1958).

Morillon, C.

E. Luc-Koenig, C. Morillon, and J. Vergés, “Etude Expérimentale et Théorique de l’Iode Atomique,” Phys. Scripta 12, 199–219 (1975).
[Crossref]

Radziemski, L. J.

Reader, J.

Sawyer, R. A.

M. A. Fitzgerald and R. A. Sawyer, “The Fifty-Three Electron Spectra of Caesium and Barium: Cs iii and Ba iv,” Phys. Rev. 46, 576–580 (1934).
[Crossref]

Vergés, J.

E. Luc-Koenig, C. Morillon, and J. Vergés, “Etude Expérimentale et Théorique de l’Iode Atomique,” Phys. Scripta 12, 199–219 (1975).
[Crossref]

Ark. Fys (1)

L. Minnhagen, “The energy levels of neutral atomic iodine,” Ark. Fys.  21, 415–478 (1962).

Can. J. Phys. (1)

C. Froese, “Numerical Solution of the Hartree-Fock Equations,” Can. J. Phys. 41, 1895–1910 (1963);and C. Froese Fischer and M. Wilson, “Programs for Atomic Structure Calculations,” (available from Clearinghouse for Federal Scientific and Technical Information, National Bureau of Standards, U. S. Department of Commerce, Springfield, Va. 22151).
[Crossref]

J. Opt. Soc. Am. (8)

Phys. Rev. (1)

M. A. Fitzgerald and R. A. Sawyer, “The Fifty-Three Electron Spectra of Caesium and Barium: Cs iii and Ba iv,” Phys. Rev. 46, 576–580 (1934).
[Crossref]

Phys. Scripta (1)

E. Luc-Koenig, C. Morillon, and J. Vergés, “Etude Expérimentale et Théorique de l’Iode Atomique,” Phys. Scripta 12, 199–219 (1975).
[Crossref]

Other (2)

C. E. Moore, Atomic Energy Levels, Vol. III, Natl. Bur. Std. (U.S.) Circ. No. 467 (U. S. GPO, Washington, D.C., 1958).

B. Edlén, “Atomic Spectra,” in Handbuch der Physik, Vol. 27, edited by S. Flügge (Springer, Berlin, 1964), p. 116.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

FIG. 1
FIG. 1

Structure of the 5s25p45d and 5s25p46s configurations of Cs iii. Also shown is the 5s5p6 2S1/2 level. Levels of the 5s25p45d configuration are designated in the LS-coupling scheme; levels of the 5s25p46s configuration are designated in the J1j-coupling scheme. Predicted positions of levels not experimentally observed are shown as thin lines. Full lines, 5s25p45d; dashed lines, 5s25p46s.

FIG. 2
FIG. 2

Structure of the 5s25p45d and 5s25p46s configurations of La v. Also shown is the 5s5p6 2S1/2 level. Levels of the 5s25p45d configuration are designated in the LS-coupling scheme; levels of the 5s25p46s configuration are designated in the J1j-coupling scheme. Predicted positions of levels not experimentally observed are shown as thin lines. Full lines, 5s25p45d; dashed lines, 5s25p46s. Note that the 5s25p46s(1S0, 1 2)1/2 level is not observed.

FIG. 3
FIG. 3

Ionization energies in the I i isoelectronic sequence. Zc is the net charge on the atomic core. The point for Ce vi is the result of the indicated extrapolation.

FIG. 4
FIG. 4

Isoelectronic comparison of the experimental values for the interval in the 5s25p5 2P ground term in the I i isoelectronic sequence. s is the screening constant (see text) and Zc is the net charge on the atomic core.

FIG. 5
FIG. 5

Wave numbers of the 5s25p5 2P-5s5p6 2S screening doublets in the I i isoelectronic sequence. Zc is the net charge on the atomic core.

Tables (10)

Tables Icon

TABLE I Classified lines of Cs iii. Intensities are visual estimates of photographic blackening: p = perturbed. The 5p45d levels are given in LS notation; the 5p46s levels are given in J1j notation. The uncertainty of the wavelengths is ± 0.005 Å.

Tables Icon

TABLE II Energy levels for Cs iii and La v. Note that some of the levels of La v are slightly out of order, numerically. Where no uncertainty in the level value is listed, the uncertainty corresponds to a possible error in the wavelength of ±0.005 Å: at 120 000 cm−1, ±1.0 cm−1; at 200 000 cm−1, ±2.0 cm−1; at 245 000 cm−1, ±3.0 cm−1.

Tables Icon

TABLE III Calculated energy-level values in cm−1 and percentage compositions for the 5s5p6, 5s25p45d, and 5s25p46s configurations of Cs iii. The states of 5s25p46s are denoted by an asterisk. Negative eigenvector components are preceded by a minus sign.

Tables Icon

TABLE IV Energy parameters in cm−1 for Cs iii and La v.

Tables Icon

TABLE V Resonance lines of Ba iv. The uncertainty of the wavelengths is ± 0.005 Å.

Tables Icon

TABLE VI Energy levels of Ba iv.

Tables Icon

TABLE VII Classified lines of La v. Intensities are visual estimates of photographic blackening. The 5p45d levels are given in LS notation; the 5p46s levels are given in J1j notation. The uncertainty of the wavelengths is ± 0.005 Å.

Tables Icon

TABLE VIII Calculated energy-level values in cm−1 and percentage compositions for the 5s5p6, 5s25p45d, and 5s25p46s configurations of La v. The states of 5s25p46s are denoted by an asterisk. Negative eigenvector components are preceded by a minus sign.

Tables Icon

TABLE IX Effective quantum numbers n*(6s) for various alkali-like, rare-gas-like, and halogenlike ions.

Tables Icon

TABLE X Ionization energies of ions in the I i isoelectronic sequence.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

UCG [ 5 p 4 6 s ( P 3 2 , 1 2 ) ] = E ( P 3 2 , 1 2 ) 5 / 2 + 1 3 G 1 ( 5 p 6 s ) = 136 633 cm - 1 .
ζ p = R α 2 ( Z - s ) 4 / 3 n 3 , s = s + 8.02 × 10 - 6 ( Z - s ) 3 ,