Abstract

We present cross sections for Raman scattering from water vapor excited at the four argon-laser wavelengths 476.5, 488.0, 496.5, and 514.5 nm. These cross sections, for the strong vibrational band centered at a shift near 3654 cm−1, are approximately 2.5 times larger than the corresponding N2Q-branch cross sections, and follow closely the expected (1/λR)4 dependence, where λR is the Raman scattering wavelength. We also report observations of the room-temperature depolarization and spectral profile of the band, and the overall spectral distribution of the scattering from 470 to 630 nm, for incident light at 488 nm. The latter observation indicates the absence of any other strong vibrational Raman-active modes.

© 1976 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. H. Melfi, J. D. Lawrence, and M. P. McCormick, Appl. Phys. Lett. 15, 295 (1969).
    [Crossref]
  2. J. A. Cooney, J. Appl. Meteor. 10, 301 (1971).
    [Crossref]
  3. M. Lapp, L. M. Goldman, and C. M. Penney, Science 175, 1112 (1972); M. Lapp, (1974).
    [Crossref] [PubMed]
  4. J. A. Cooney, Spectrosc. Lett. 3, 305 (1970).
    [Crossref]
  5. C. M. Penney, L. M. Goldman, and M. Lapp, Nature (London) Phys. Sci. 235, 110 (1972).
  6. W. F. Murphy, W. Holzer, and H. J. Bernstein, Appl. Spectrosc. 23, 211 (1969).
    [Crossref]
  7. D. G. Fouche and R. K. Chang, Appl. Phys. Lett. 20, 256 (1972).
    [Crossref]
  8. H. A. Hyatt, J. M. Cherlow, W. R. Fenner, and S. P. S. Porto, J. Opt. Soc. Am. 63, 1604 (1973).
    [Crossref]
  9. A. Weber, in The Raman Effect, Vol. 2: Applications, edited by Anthony Anderson (Dekker, New York, 1973), Chap. 9.
  10. R. Schwiesow, AIAA J. 11, 87 (1973). In a personal communication (1975), Schwiesow has indicated his concurrence with our results.
    [Crossref]
  11. H. L. Johnston and M. K. Walker, Phys. Rev. 39, 535 (1932).
    [Crossref]
  12. I. R. Rao and P. Koteswaran, J. Chem. Phys. 5, 667 (1937).
    [Crossref]
  13. D. H. Rank, K. D. Larsen, and E. B. Bordner, J. Chem. Phys. 2, 464 (1934).
    [Crossref]
  14. C. M. Penney, L. M. Goldman, and M. Lapp, AIAA Publ. 71–1085 (1971).
  15. M. Lapp, in Laser Raman Gas Diagnostics, edited by M. Lapp and C. M. Penney (Plenum, New York, 1974), p. 130. See also M. Lapp, C. M. Penney, and R. L. St. Peters, Project SQUID (Office of Naval Research) Technical Report GE-1-PU (1973).
  16. C. M. Penney, R. L. St. Peters, and M. Lapp, J. Opt. Soc. Am. 64, 712 (1974). See also C. M. Penney, R. L. St. Peters, and M. Lapp, (National Technical Information Service, Springfield, Va., 1973).
    [Crossref]
  17. W. S. Benedict, Mém. Soc. Roy. Sci. Liége, Special Vol.  2, 18 (1957).
  18. J. L. Bribes, R. Gaufres, M. Monan, M. Lapp, and C. M. Penney, Appl. Phys. Lett. 28, 336 (1976).
    [Crossref]
  19. C. M. Penney, J. Opt. Soc. Am. 59, 34 (1969).
    [Crossref]
  20. R. D. Sharma and L. A. Levin, J. Chem. Phys. 58, 1660 (1973).
    [Crossref]

1976 (1)

J. L. Bribes, R. Gaufres, M. Monan, M. Lapp, and C. M. Penney, Appl. Phys. Lett. 28, 336 (1976).
[Crossref]

1974 (1)

1973 (3)

H. A. Hyatt, J. M. Cherlow, W. R. Fenner, and S. P. S. Porto, J. Opt. Soc. Am. 63, 1604 (1973).
[Crossref]

R. Schwiesow, AIAA J. 11, 87 (1973). In a personal communication (1975), Schwiesow has indicated his concurrence with our results.
[Crossref]

R. D. Sharma and L. A. Levin, J. Chem. Phys. 58, 1660 (1973).
[Crossref]

1972 (3)

C. M. Penney, L. M. Goldman, and M. Lapp, Nature (London) Phys. Sci. 235, 110 (1972).

M. Lapp, L. M. Goldman, and C. M. Penney, Science 175, 1112 (1972); M. Lapp, (1974).
[Crossref] [PubMed]

D. G. Fouche and R. K. Chang, Appl. Phys. Lett. 20, 256 (1972).
[Crossref]

1971 (2)

C. M. Penney, L. M. Goldman, and M. Lapp, AIAA Publ. 71–1085 (1971).

J. A. Cooney, J. Appl. Meteor. 10, 301 (1971).
[Crossref]

1970 (1)

J. A. Cooney, Spectrosc. Lett. 3, 305 (1970).
[Crossref]

1969 (3)

1957 (1)

W. S. Benedict, Mém. Soc. Roy. Sci. Liége, Special Vol.  2, 18 (1957).

1937 (1)

I. R. Rao and P. Koteswaran, J. Chem. Phys. 5, 667 (1937).
[Crossref]

1934 (1)

D. H. Rank, K. D. Larsen, and E. B. Bordner, J. Chem. Phys. 2, 464 (1934).
[Crossref]

1932 (1)

H. L. Johnston and M. K. Walker, Phys. Rev. 39, 535 (1932).
[Crossref]

Benedict, W. S.

W. S. Benedict, Mém. Soc. Roy. Sci. Liége, Special Vol.  2, 18 (1957).

Bernstein, H. J.

Bordner, E. B.

D. H. Rank, K. D. Larsen, and E. B. Bordner, J. Chem. Phys. 2, 464 (1934).
[Crossref]

Bribes, J. L.

J. L. Bribes, R. Gaufres, M. Monan, M. Lapp, and C. M. Penney, Appl. Phys. Lett. 28, 336 (1976).
[Crossref]

Chang, R. K.

D. G. Fouche and R. K. Chang, Appl. Phys. Lett. 20, 256 (1972).
[Crossref]

Cherlow, J. M.

Cooney, J. A.

J. A. Cooney, J. Appl. Meteor. 10, 301 (1971).
[Crossref]

J. A. Cooney, Spectrosc. Lett. 3, 305 (1970).
[Crossref]

Fenner, W. R.

Fouche, D. G.

D. G. Fouche and R. K. Chang, Appl. Phys. Lett. 20, 256 (1972).
[Crossref]

Gaufres, R.

J. L. Bribes, R. Gaufres, M. Monan, M. Lapp, and C. M. Penney, Appl. Phys. Lett. 28, 336 (1976).
[Crossref]

Goldman, L. M.

C. M. Penney, L. M. Goldman, and M. Lapp, Nature (London) Phys. Sci. 235, 110 (1972).

M. Lapp, L. M. Goldman, and C. M. Penney, Science 175, 1112 (1972); M. Lapp, (1974).
[Crossref] [PubMed]

C. M. Penney, L. M. Goldman, and M. Lapp, AIAA Publ. 71–1085 (1971).

Holzer, W.

Hyatt, H. A.

Johnston, H. L.

H. L. Johnston and M. K. Walker, Phys. Rev. 39, 535 (1932).
[Crossref]

Koteswaran, P.

I. R. Rao and P. Koteswaran, J. Chem. Phys. 5, 667 (1937).
[Crossref]

Lapp, M.

J. L. Bribes, R. Gaufres, M. Monan, M. Lapp, and C. M. Penney, Appl. Phys. Lett. 28, 336 (1976).
[Crossref]

C. M. Penney, R. L. St. Peters, and M. Lapp, J. Opt. Soc. Am. 64, 712 (1974). See also C. M. Penney, R. L. St. Peters, and M. Lapp, (National Technical Information Service, Springfield, Va., 1973).
[Crossref]

M. Lapp, L. M. Goldman, and C. M. Penney, Science 175, 1112 (1972); M. Lapp, (1974).
[Crossref] [PubMed]

C. M. Penney, L. M. Goldman, and M. Lapp, Nature (London) Phys. Sci. 235, 110 (1972).

C. M. Penney, L. M. Goldman, and M. Lapp, AIAA Publ. 71–1085 (1971).

M. Lapp, in Laser Raman Gas Diagnostics, edited by M. Lapp and C. M. Penney (Plenum, New York, 1974), p. 130. See also M. Lapp, C. M. Penney, and R. L. St. Peters, Project SQUID (Office of Naval Research) Technical Report GE-1-PU (1973).

Larsen, K. D.

D. H. Rank, K. D. Larsen, and E. B. Bordner, J. Chem. Phys. 2, 464 (1934).
[Crossref]

Lawrence, J. D.

S. H. Melfi, J. D. Lawrence, and M. P. McCormick, Appl. Phys. Lett. 15, 295 (1969).
[Crossref]

Levin, L. A.

R. D. Sharma and L. A. Levin, J. Chem. Phys. 58, 1660 (1973).
[Crossref]

McCormick, M. P.

S. H. Melfi, J. D. Lawrence, and M. P. McCormick, Appl. Phys. Lett. 15, 295 (1969).
[Crossref]

Melfi, S. H.

S. H. Melfi, J. D. Lawrence, and M. P. McCormick, Appl. Phys. Lett. 15, 295 (1969).
[Crossref]

Monan, M.

J. L. Bribes, R. Gaufres, M. Monan, M. Lapp, and C. M. Penney, Appl. Phys. Lett. 28, 336 (1976).
[Crossref]

Murphy, W. F.

Penney, C. M.

J. L. Bribes, R. Gaufres, M. Monan, M. Lapp, and C. M. Penney, Appl. Phys. Lett. 28, 336 (1976).
[Crossref]

C. M. Penney, R. L. St. Peters, and M. Lapp, J. Opt. Soc. Am. 64, 712 (1974). See also C. M. Penney, R. L. St. Peters, and M. Lapp, (National Technical Information Service, Springfield, Va., 1973).
[Crossref]

C. M. Penney, L. M. Goldman, and M. Lapp, Nature (London) Phys. Sci. 235, 110 (1972).

M. Lapp, L. M. Goldman, and C. M. Penney, Science 175, 1112 (1972); M. Lapp, (1974).
[Crossref] [PubMed]

C. M. Penney, L. M. Goldman, and M. Lapp, AIAA Publ. 71–1085 (1971).

C. M. Penney, J. Opt. Soc. Am. 59, 34 (1969).
[Crossref]

Peters, R. L. St.

Porto, S. P. S.

Rank, D. H.

D. H. Rank, K. D. Larsen, and E. B. Bordner, J. Chem. Phys. 2, 464 (1934).
[Crossref]

Rao, I. R.

I. R. Rao and P. Koteswaran, J. Chem. Phys. 5, 667 (1937).
[Crossref]

Schwiesow, R.

R. Schwiesow, AIAA J. 11, 87 (1973). In a personal communication (1975), Schwiesow has indicated his concurrence with our results.
[Crossref]

Sharma, R. D.

R. D. Sharma and L. A. Levin, J. Chem. Phys. 58, 1660 (1973).
[Crossref]

Walker, M. K.

H. L. Johnston and M. K. Walker, Phys. Rev. 39, 535 (1932).
[Crossref]

Weber, A.

A. Weber, in The Raman Effect, Vol. 2: Applications, edited by Anthony Anderson (Dekker, New York, 1973), Chap. 9.

AIAA J. (1)

R. Schwiesow, AIAA J. 11, 87 (1973). In a personal communication (1975), Schwiesow has indicated his concurrence with our results.
[Crossref]

AIAA Publ. 71–1085 (1)

C. M. Penney, L. M. Goldman, and M. Lapp, AIAA Publ. 71–1085 (1971).

Appl. Phys. Lett. (3)

S. H. Melfi, J. D. Lawrence, and M. P. McCormick, Appl. Phys. Lett. 15, 295 (1969).
[Crossref]

D. G. Fouche and R. K. Chang, Appl. Phys. Lett. 20, 256 (1972).
[Crossref]

J. L. Bribes, R. Gaufres, M. Monan, M. Lapp, and C. M. Penney, Appl. Phys. Lett. 28, 336 (1976).
[Crossref]

Appl. Spectrosc. (1)

J. Appl. Meteor. (1)

J. A. Cooney, J. Appl. Meteor. 10, 301 (1971).
[Crossref]

J. Chem. Phys. (3)

I. R. Rao and P. Koteswaran, J. Chem. Phys. 5, 667 (1937).
[Crossref]

D. H. Rank, K. D. Larsen, and E. B. Bordner, J. Chem. Phys. 2, 464 (1934).
[Crossref]

R. D. Sharma and L. A. Levin, J. Chem. Phys. 58, 1660 (1973).
[Crossref]

J. Opt. Soc. Am. (3)

Mém. Soc. Roy. Sci. Liége (1)

W. S. Benedict, Mém. Soc. Roy. Sci. Liége, Special Vol.  2, 18 (1957).

Nature (London) Phys. Sci. (1)

C. M. Penney, L. M. Goldman, and M. Lapp, Nature (London) Phys. Sci. 235, 110 (1972).

Phys. Rev. (1)

H. L. Johnston and M. K. Walker, Phys. Rev. 39, 535 (1932).
[Crossref]

Science (1)

M. Lapp, L. M. Goldman, and C. M. Penney, Science 175, 1112 (1972); M. Lapp, (1974).
[Crossref] [PubMed]

Spectrosc. Lett. (1)

J. A. Cooney, Spectrosc. Lett. 3, 305 (1970).
[Crossref]

Other (2)

A. Weber, in The Raman Effect, Vol. 2: Applications, edited by Anthony Anderson (Dekker, New York, 1973), Chap. 9.

M. Lapp, in Laser Raman Gas Diagnostics, edited by M. Lapp and C. M. Penney (Plenum, New York, 1974), p. 130. See also M. Lapp, C. M. Penney, and R. L. St. Peters, Project SQUID (Office of Naval Research) Technical Report GE-1-PU (1973).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

FIG. 1
FIG. 1

Spectral distribution of Raman scattering from water vapor and a trace of air. The peak height of the exciting line, which results from spectrally unshifted scattering of the incident beam by water vapor and cell walls, is attenuated by a factor of approximately 105. The peak height of the H2O vibrational band is attenuated by a factor of 10 ± 20%. The slit function for this measurement is triangular with approximately 8 cm−1 full width at half-maximum. The vapor was maintained at 150 °C in a cell surrounded by an oven, with a cold finger temperature of 98 °C.

FIG. 2
FIG. 2

Band profile of water-vapor Raman scattering at 24 °C, excited by the 488 nm line of an argon laser. The slit function for this computer-processed data is triangular with a full width at half-maximum of 1.8 cm−1. The three peaks marked A, B, and C are at Raman shifts of 3653.8, 3650.1, and 3646.4 cm−1. These shifts were determined by calibration against a neon 594.483 nm reference line. However, observed short-range variations in our spectrometer wavelength drive contribute an absolute uncertainty of 0.5 cm−1, and relative uncertainties of about 0.25 cm−1 in their positions.

FIG. 3
FIG. 3

Part of the band profile of water-vapor Raman scattering from an H2—O2 flame at approximately 1500 °K. This band has an appreciable intensity over a spectral interval of at least 3 nm. The slit function for this measurement was triangular with 4.6 cm−1 full width at half-maximum. Further experimental details are given in the second paper listed in Ref. 3.

FIG. 4
FIG. 4

Dependence of the water-vapor Raman scattering cross section on exciting wavelength. Note that these cross sections are presented on a log–log plot as a function of the corresponding Raman wavelengths, shifted from each exciting line by 3654 cm−1.

Tables (1)

Tables Icon

TABLE I Water-vapor cross sections, summed over polarization, for scattering through 90° from directions of polarization and propagation of a linearly polarized incident beam. The absolute cross sections in the last two columns are in units of (cm2/sr) × 10−30.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

F R = 7 ( ρ - ρ Q ) / ( 1 + ρ ) ( 3 - 4 ρ Q ) .