Abstract

Sensitivity for inclination detection of a foveally seen line is exceedingly high. It is shown that appropriately structured visual stimuli can interfere with the inclination detection threshold, presumably by inhibiting some neural signals before they are channeled to interact with others of their ensemble. The parameters of this inhibition, and by implication those of the sensitivity of the involved neural elements, are outlined: spatial location, time course, movement sensitivity, dichoptic nature, nonrecurrent characteristics, and position rather than orientation dependency.

© 1976 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Westheimer and G. Hauske, Vision Res. 15, 1137–1141 (1975).
    [CrossRef] [PubMed]
  2. J. Jastrow, Am. J. Psychol. 5, 214–223 (1893).
    [CrossRef]
  3. D. P. Andrews, A. K. Butcher, and B. R. Buckley, Vision Res. 13, 599–620 (1973).
    [CrossRef] [PubMed]
  4. H. Bouma and J. J. Andriessen, Vision Res. 10, 333–349 (1970).
    [CrossRef] [PubMed]
  5. R. H. S. Carpenter and C. Blakemore, Exp. Brain Res. 18, 287–303 (1973).
    [CrossRef] [PubMed]
  6. V. Virsu and H. Taskinen, Exp. Brain Res.,  23, 65–74 (1975).
    [CrossRef] [PubMed]
  7. D. Hubel and T. Wiesel, J. Physiol. (London),  160, 106–154 (1962).
  8. G. H. Henry, B. Dreher, and P. O. Bishop, J. Neurophysiol. 37, 1394–1409 (1974).
    [PubMed]

1975 (2)

G. Westheimer and G. Hauske, Vision Res. 15, 1137–1141 (1975).
[CrossRef] [PubMed]

V. Virsu and H. Taskinen, Exp. Brain Res.,  23, 65–74 (1975).
[CrossRef] [PubMed]

1974 (1)

G. H. Henry, B. Dreher, and P. O. Bishop, J. Neurophysiol. 37, 1394–1409 (1974).
[PubMed]

1973 (2)

R. H. S. Carpenter and C. Blakemore, Exp. Brain Res. 18, 287–303 (1973).
[CrossRef] [PubMed]

D. P. Andrews, A. K. Butcher, and B. R. Buckley, Vision Res. 13, 599–620 (1973).
[CrossRef] [PubMed]

1970 (1)

H. Bouma and J. J. Andriessen, Vision Res. 10, 333–349 (1970).
[CrossRef] [PubMed]

1962 (1)

D. Hubel and T. Wiesel, J. Physiol. (London),  160, 106–154 (1962).

1893 (1)

J. Jastrow, Am. J. Psychol. 5, 214–223 (1893).
[CrossRef]

Andrews, D. P.

D. P. Andrews, A. K. Butcher, and B. R. Buckley, Vision Res. 13, 599–620 (1973).
[CrossRef] [PubMed]

Andriessen, J. J.

H. Bouma and J. J. Andriessen, Vision Res. 10, 333–349 (1970).
[CrossRef] [PubMed]

Bishop, P. O.

G. H. Henry, B. Dreher, and P. O. Bishop, J. Neurophysiol. 37, 1394–1409 (1974).
[PubMed]

Blakemore, C.

R. H. S. Carpenter and C. Blakemore, Exp. Brain Res. 18, 287–303 (1973).
[CrossRef] [PubMed]

Bouma, H.

H. Bouma and J. J. Andriessen, Vision Res. 10, 333–349 (1970).
[CrossRef] [PubMed]

Buckley, B. R.

D. P. Andrews, A. K. Butcher, and B. R. Buckley, Vision Res. 13, 599–620 (1973).
[CrossRef] [PubMed]

Butcher, A. K.

D. P. Andrews, A. K. Butcher, and B. R. Buckley, Vision Res. 13, 599–620 (1973).
[CrossRef] [PubMed]

Carpenter, R. H. S.

R. H. S. Carpenter and C. Blakemore, Exp. Brain Res. 18, 287–303 (1973).
[CrossRef] [PubMed]

Dreher, B.

G. H. Henry, B. Dreher, and P. O. Bishop, J. Neurophysiol. 37, 1394–1409 (1974).
[PubMed]

Hauske, G.

G. Westheimer and G. Hauske, Vision Res. 15, 1137–1141 (1975).
[CrossRef] [PubMed]

Henry, G. H.

G. H. Henry, B. Dreher, and P. O. Bishop, J. Neurophysiol. 37, 1394–1409 (1974).
[PubMed]

Hubel, D.

D. Hubel and T. Wiesel, J. Physiol. (London),  160, 106–154 (1962).

Jastrow, J.

J. Jastrow, Am. J. Psychol. 5, 214–223 (1893).
[CrossRef]

Taskinen, H.

V. Virsu and H. Taskinen, Exp. Brain Res.,  23, 65–74 (1975).
[CrossRef] [PubMed]

Virsu, V.

V. Virsu and H. Taskinen, Exp. Brain Res.,  23, 65–74 (1975).
[CrossRef] [PubMed]

Westheimer, G.

G. Westheimer and G. Hauske, Vision Res. 15, 1137–1141 (1975).
[CrossRef] [PubMed]

Wiesel, T.

D. Hubel and T. Wiesel, J. Physiol. (London),  160, 106–154 (1962).

Am. J. Psychol. (1)

J. Jastrow, Am. J. Psychol. 5, 214–223 (1893).
[CrossRef]

Exp. Brain Res. (2)

R. H. S. Carpenter and C. Blakemore, Exp. Brain Res. 18, 287–303 (1973).
[CrossRef] [PubMed]

V. Virsu and H. Taskinen, Exp. Brain Res.,  23, 65–74 (1975).
[CrossRef] [PubMed]

J. Neurophysiol. (1)

G. H. Henry, B. Dreher, and P. O. Bishop, J. Neurophysiol. 37, 1394–1409 (1974).
[PubMed]

J. Physiol. (London) (1)

D. Hubel and T. Wiesel, J. Physiol. (London),  160, 106–154 (1962).

Vision Res. (3)

D. P. Andrews, A. K. Butcher, and B. R. Buckley, Vision Res. 13, 599–620 (1973).
[CrossRef] [PubMed]

H. Bouma and J. J. Andriessen, Vision Res. 10, 333–349 (1970).
[CrossRef] [PubMed]

G. Westheimer and G. Hauske, Vision Res. 15, 1137–1141 (1975).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

FIG. 1
FIG. 1

Threshold for detection of inclination from the vertical of a line, 30′ of arc long, presented for 0.2 sec, in the presence of a pair of flanking vertical lines, 15′ of arc long (see inset), as a function of lateral separation of the flanking lines from the test line. Subjects KS and LK. Dashed horizontal line indicates threshold with test line unflanked.

FIG. 2
FIG. 2

Threshold for detection of inclination from the vertical of a line, 30′ of arc long, 0.2 sec duration, in the presence of a pair of flanking vertical lines of various lengths, placed at their position of maximum interference according to data of Fig. 1. Dashed horizontal line indicates threshold with test line unflanked.

FIG. 3
FIG. 3

Threshold for detection of inclination from the vertical of a line, 30′ of arc long, 0.2 sec duration, in the presence of a pair of vertical flanks on either side, as a function of vertical separation of the members of each pair. Flanking lines are laterally placed in their position of maximum interference. Dashed horizontal line indicates threshold with test line unflanked.

FIG. 4
FIG. 4

Threshold for detection of inclination from the vertical of a line, 30′ of arc long, 0.2 see duration, in the presence of various laterally placed interference stimuli. Subject LK. This constitutes a demonstration of the lack of critical longitudinal interference location. Interference is dependent on total length of flanking stimulation, not whether it is placed lateral to the end of the test line or to the middle.

FIG. 5
FIG. 5

Demonstration that unilateral flanking does not induce a change in the threshold for detection of inclination of a line, but that bilateral flanking causes interference regardless of whether the flanking line shares the orientation of the test line or not (see text).

FIG. 6
FIG. 6

Threshold for detection of inclination from the vertical of a test line, 30′ of arc long, 0.1 see duration, in the presence of a pair of flanking lines, 0.03 see duration, 0.8 log unit brighter than test line, as a function of onset asynchrony of flanking lines. Flanking lines are in their most effective position, and have lengths indicated in figure. Dashed horizontal lines indicate threshold with test line unflanked.

FIG. 7
FIG. 7

Threshold for detection of inclination from the vertical of a single line, 30′ of arc long, 0.2 sec duration, in the presence of moving flanks. A: Test line presented alone. B: A single vertical line is moved from the outer edge of the interference zone on one side, through the test line to the outer edge of the zone on the other side. It causes little interference at a velocity of 1 deg/sec. C: A pair of moving flanking lines sweep in a saw-tooth motion pattern through the interference zones one on each side. At a speed of 1 deg/sec there is strong interference. Interfering lines are 15′ long for subject LB, 30′ long for subjects LK and SM.

FIG. 8
FIG. 8

Threshold for detection of inclination from the vertical of a line, 30′ of arc long, 0.2 sec duration, in the presence of a pair of interfering lines, 30′ of arc long, whose orientation was set at various angles from the vertical. The interfering lines intersect in the middle of the test line, except when they are vertical; then they are placed 0.5′ lateral to the test line. Dashed horizontal line indicates threshold with test line unflanked.

FIG. 9
FIG. 9

Threshold for detection of inclination from the vertical of a line, 30′ of arc long, 0.2 sec duration in the presence of a pair of interfering lines oriented at various angles from the vertical. The interfering lines on each side were set at their various orientations by rotating them around their lateral position of maximum interference. Zero angle of orientation then represents the experimental condition studied in the experiments of Figs. 1 and 2. Dashed horizontal line indicates threshold with test line unflanked.

FIG. 10
FIG. 10

The louver experiment. Pairs of short (6′ of arc) interference lines are placed on each side of the test line and set at various angles of orientation with respect to the vertical by rotating them around their lateral position of maximum interference. Interference tuning is now broader than when the interference lines are longer.

FIG. 11
FIG. 11

Demonstration that purely horizontal lines, if positioned where they are most effective, are capable of interfering with the threshold for detection of inclination from the vertical. There are five horizontal lines, 2′ of arc in length, on each side of the test line.

FIG. 12
FIG. 12

Elevation of threshold for detection of inclination from the vertical of a 30′ of arc test line, 0.2 sec duration, in the presence of 16 bright dots on each side. A: Test line presented alone. B: Dots lined up vertically to approximate a contour placed in positions of strong interference (1.5′ of arc lateral for subject LK, 2′ for LB). C: Dots randomly arranged so as to create a vertical contour, but placed laterally with an equal averaged efficiency of interaction.

Tables (1)

Tables Icon

TABLE I Threshold for detection of inclination from the vertical of a line, 30 min of arc long, presented for 0.2 sec in five subjects.