Abstract

This paper discusses some general properties of Zernike polynomials, such as their Fourier transforms, integral representations, and derivatives. A Zernike representation of the Kolmogoroff spectrum of turbulence is given that provides a complete analytical description of the number of independent corrections required in a wavefront compensation system.

© 1976 Optical Society of America

PDF Article

References

  • View by:
  • |
  • |

  1. M. Born and E. Wolf, Principles of Optics (Pergamon, New York, 1965), Sec. 9.2.
  2. D. L. Fried, J. Opt. Soc. Am. 55, 1427 (1965).
  3. L. C. Bradley and J. Herrmann, Appl. Opt. 13, 331 (1974).
  4. S. N. Bezdid'ko, Sov. J. Opt. Tech. 41, 425 (1974).
  5. Defining the aperture weight function W(r) as shown allows the aperture weighted variance, σ2, of a phase function, ø, to be written as σ2 = ∫ d2rw(r2(r).
  6. Although Eq. (29) has not been proven to be an asymptotic form of Eq. (28), a graph of Eq. (28) yields a linear log plot for large J. Equation (29) represents a fit to such a plot.
  7. L. I. Golden, R. V. Shack, P. N. Slater, NASA Final Report, NAS 8-27863 (1974).
  8. D. L. Fried (private communication).

Bezdid’ko, S. N.

S. N. Bezdid'ko, Sov. J. Opt. Tech. 41, 425 (1974).

Born, M.

M. Born and E. Wolf, Principles of Optics (Pergamon, New York, 1965), Sec. 9.2.

Bradley, L. C.

L. C. Bradley and J. Herrmann, Appl. Opt. 13, 331 (1974).

Fried, D. L.

D. L. Fried, J. Opt. Soc. Am. 55, 1427 (1965).

D. L. Fried (private communication).

Golden, L. I.

L. I. Golden, R. V. Shack, P. N. Slater, NASA Final Report, NAS 8-27863 (1974).

Herrmann, J.

L. C. Bradley and J. Herrmann, Appl. Opt. 13, 331 (1974).

Shack, R. V.

L. I. Golden, R. V. Shack, P. N. Slater, NASA Final Report, NAS 8-27863 (1974).

Slater, P. N.

L. I. Golden, R. V. Shack, P. N. Slater, NASA Final Report, NAS 8-27863 (1974).

Wolf, E.

M. Born and E. Wolf, Principles of Optics (Pergamon, New York, 1965), Sec. 9.2.

Other

M. Born and E. Wolf, Principles of Optics (Pergamon, New York, 1965), Sec. 9.2.

D. L. Fried, J. Opt. Soc. Am. 55, 1427 (1965).

L. C. Bradley and J. Herrmann, Appl. Opt. 13, 331 (1974).

S. N. Bezdid'ko, Sov. J. Opt. Tech. 41, 425 (1974).

Defining the aperture weight function W(r) as shown allows the aperture weighted variance, σ2, of a phase function, ø, to be written as σ2 = ∫ d2rw(r2(r).

Although Eq. (29) has not been proven to be an asymptotic form of Eq. (28), a graph of Eq. (28) yields a linear log plot for large J. Equation (29) represents a fit to such a plot.

L. I. Golden, R. V. Shack, P. N. Slater, NASA Final Report, NAS 8-27863 (1974).

D. L. Fried (private communication).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.