Abstract

The curium spectrum emitted by electrodeless lamps was observed from 2400 to 11 500 Å and the wavelengths of over 13 250 lines were accurately measured. Zeeman effect and spectrum-assignment plates were photographed from 2400 to 9000 Å. From data obtained on the spectrum-assignment plates, over 6800 lines were assigned to Cm i and over 4050 lines were assigned to the Cm ii spectrum. The analysis of the Cm i spectrum has produced 335 odd levels and 348 even levels that combine to classify over 5025 Cm lines. Only the energy levels are presented here. The Landé g values of most levels have been obtained from the Zeeman effect data and isotope shifts were determined for many levels. These data were useful in the assignment of levels to electronic configurations of Cm i. The ground configuration of Cm i is [Rn]5f7 6d 7s2 and the lowest level of the [Rn]5f87s2 configuration is only 1214 cm−1 above the ground level.

© 1976 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. T. Seaborg, R. A. James, and A. Ghiorso, “The new element curium (atomic number 96)” in The Transuranium Elements: Research Papers, Vol. 14B, Paper 22.2 (MacGraw-Hill, New York, 1949), p. 1554.
  2. J. G. Conway, W. F. Moore, and W. T. Crane, J. Am. Chem. Soc. 73, 1308 (1951).
    [CrossRef]
  3. J. G. Conway and R. D. McLaughlin, J. Opt. Soc. Am. 46, 91 (1956).
    [CrossRef]
  4. R. H. Gaddy, Appl. Spectrosc. 26, 49 (1972).
    [CrossRef]
  5. J. C. Hubbs, R. Marrus, and J. O. Winocur, Phys. Rev. 114, 586 (1959).
    [CrossRef]
  6. E. F. Worden, R. G. Gutmacher, E. K. Hulet, J. G. Conway, and M. Fred, J. Opt. Soc. Am. 52, 1311A (1962).
  7. J. Sugar, J. Chem. Phys. 59, 788 (1973); J. Chem. Phys. 60, 4103 (1974).
    [CrossRef]
  8. W. F. Meggers, J. Opt. Soc. Am. 50, 405 (1960).
    [CrossRef]
  9. F. S. Tomkins and M. Fred, J. Opt. Soc. Am. 47, 1087 (1957).
    [CrossRef]
  10. E. F. Worden, R. G. Gutmacher, and J. G. Conway, Appl. Opt. 2, 707 (1963).
    [CrossRef]
  11. F. S. Tomkins and M. Fred, Appl. Opt. 2, 715 (1963).
    [CrossRef]
  12. J. G. Conway and E. F. Worden, J. Opt. Soc. Am. 61, 704 (1971).
    [CrossRef]
  13. F. S. Tomkins and M. Fred, J. Opt. Soc. Am. 41, 641 (1951).
    [CrossRef]
  14. S. P. Davis and J. G. Phillips, The Red System(A2Π–X2∑) of the CN Molecule, (University of California, Berkeley, 1963).
  15. W. C. Bentley, J. Inorg. Nucl. Chem. 30, 2007 (1968).
    [CrossRef]
  16. R. G. Gutmacher of Lawrence Livermore Laboratory has compiled extensive line lists of 240Pu as emitted by electrodeless lamps and observed on the ANL 9.15 m spectrograph.
  17. M. Fred and F. S. Tomkins, J. Opt. Soc. Am. 47, 1076 (1957).
    [CrossRef]
  18. A. Giacchetti, J. Opt. Soc. Am. 56, 653 (1966); J. Opt. Soc. Am. 57, 728 (1967).
    [CrossRef]
  19. L. C. Marquet and S. P. Davis, J. Opt. Soc. Am. 55, 471 (1965).
    [CrossRef]
  20. J. Reader and S. P. Davis, J. Res. Nat. Bur. Stand., Sec. A 71, 587 (1967).
    [CrossRef]
  21. P. F. A. Klinkenberg, Physica (Utrecht) 32, 113 (1966).
  22. K. L. Vander Sluis, J. Opt. Soc. Am. 46, 605 (1956).
    [CrossRef]
  23. We are indebted to M. Fred of Argonne National Laboratory for the computer program for least-squares reduction of the Zeeman data.
  24. J. M. Blank, thesis, Massachusetts Institute of Technology, June, 1952.
  25. Our search programs were obtained from the National Bureau Standards. They were originally written by G. Racah for the analysis of complex spectra.
  26. Mark Fred of Argonne National Laboratory estimated this value based on observations in other actinides.
  27. L. Brewer, J. Opt. Soc. Am. 61, 1666 (1971).
    [CrossRef]
  28. H. N. Russell, Astrophys. J. 96, 11 (1942).
    [CrossRef]
  29. We are indebted to H. M. Crosswhite of Argonne National Laboratory for performing the theoretical calculations on 5f87s2 of Cm i.
  30. W. T. Carnall, H. M. Crosswhite, R. G. Pappalardo, D. Cohen, S. Fried, P. Lucas, and F. Wagner, J. Chem. Phys. 61, 4993 (1974).
    [CrossRef]

1974 (1)

W. T. Carnall, H. M. Crosswhite, R. G. Pappalardo, D. Cohen, S. Fried, P. Lucas, and F. Wagner, J. Chem. Phys. 61, 4993 (1974).
[CrossRef]

1973 (1)

J. Sugar, J. Chem. Phys. 59, 788 (1973); J. Chem. Phys. 60, 4103 (1974).
[CrossRef]

1972 (1)

1971 (2)

1968 (1)

W. C. Bentley, J. Inorg. Nucl. Chem. 30, 2007 (1968).
[CrossRef]

1967 (1)

J. Reader and S. P. Davis, J. Res. Nat. Bur. Stand., Sec. A 71, 587 (1967).
[CrossRef]

1966 (2)

1965 (1)

1963 (2)

1962 (1)

E. F. Worden, R. G. Gutmacher, E. K. Hulet, J. G. Conway, and M. Fred, J. Opt. Soc. Am. 52, 1311A (1962).

1960 (1)

W. F. Meggers, J. Opt. Soc. Am. 50, 405 (1960).
[CrossRef]

1959 (1)

J. C. Hubbs, R. Marrus, and J. O. Winocur, Phys. Rev. 114, 586 (1959).
[CrossRef]

1957 (2)

1956 (2)

1951 (2)

J. G. Conway, W. F. Moore, and W. T. Crane, J. Am. Chem. Soc. 73, 1308 (1951).
[CrossRef]

F. S. Tomkins and M. Fred, J. Opt. Soc. Am. 41, 641 (1951).
[CrossRef]

1942 (1)

H. N. Russell, Astrophys. J. 96, 11 (1942).
[CrossRef]

Bentley, W. C.

W. C. Bentley, J. Inorg. Nucl. Chem. 30, 2007 (1968).
[CrossRef]

Blank, J. M.

J. M. Blank, thesis, Massachusetts Institute of Technology, June, 1952.

Brewer, L.

Carnall, W. T.

W. T. Carnall, H. M. Crosswhite, R. G. Pappalardo, D. Cohen, S. Fried, P. Lucas, and F. Wagner, J. Chem. Phys. 61, 4993 (1974).
[CrossRef]

Cohen, D.

W. T. Carnall, H. M. Crosswhite, R. G. Pappalardo, D. Cohen, S. Fried, P. Lucas, and F. Wagner, J. Chem. Phys. 61, 4993 (1974).
[CrossRef]

Conway, J. G.

J. G. Conway and E. F. Worden, J. Opt. Soc. Am. 61, 704 (1971).
[CrossRef]

E. F. Worden, R. G. Gutmacher, and J. G. Conway, Appl. Opt. 2, 707 (1963).
[CrossRef]

E. F. Worden, R. G. Gutmacher, E. K. Hulet, J. G. Conway, and M. Fred, J. Opt. Soc. Am. 52, 1311A (1962).

J. G. Conway and R. D. McLaughlin, J. Opt. Soc. Am. 46, 91 (1956).
[CrossRef]

J. G. Conway, W. F. Moore, and W. T. Crane, J. Am. Chem. Soc. 73, 1308 (1951).
[CrossRef]

Crane, W. T.

J. G. Conway, W. F. Moore, and W. T. Crane, J. Am. Chem. Soc. 73, 1308 (1951).
[CrossRef]

Crosswhite, H. M.

W. T. Carnall, H. M. Crosswhite, R. G. Pappalardo, D. Cohen, S. Fried, P. Lucas, and F. Wagner, J. Chem. Phys. 61, 4993 (1974).
[CrossRef]

Davis, S. P.

J. Reader and S. P. Davis, J. Res. Nat. Bur. Stand., Sec. A 71, 587 (1967).
[CrossRef]

L. C. Marquet and S. P. Davis, J. Opt. Soc. Am. 55, 471 (1965).
[CrossRef]

S. P. Davis and J. G. Phillips, The Red System(A2Π–X2∑) of the CN Molecule, (University of California, Berkeley, 1963).

Fred, M.

Fried, S.

W. T. Carnall, H. M. Crosswhite, R. G. Pappalardo, D. Cohen, S. Fried, P. Lucas, and F. Wagner, J. Chem. Phys. 61, 4993 (1974).
[CrossRef]

Gaddy, R. H.

Ghiorso, A.

G. T. Seaborg, R. A. James, and A. Ghiorso, “The new element curium (atomic number 96)” in The Transuranium Elements: Research Papers, Vol. 14B, Paper 22.2 (MacGraw-Hill, New York, 1949), p. 1554.

Giacchetti, A.

Gutmacher, R. G.

E. F. Worden, R. G. Gutmacher, and J. G. Conway, Appl. Opt. 2, 707 (1963).
[CrossRef]

E. F. Worden, R. G. Gutmacher, E. K. Hulet, J. G. Conway, and M. Fred, J. Opt. Soc. Am. 52, 1311A (1962).

Hubbs, J. C.

J. C. Hubbs, R. Marrus, and J. O. Winocur, Phys. Rev. 114, 586 (1959).
[CrossRef]

Hulet, E. K.

E. F. Worden, R. G. Gutmacher, E. K. Hulet, J. G. Conway, and M. Fred, J. Opt. Soc. Am. 52, 1311A (1962).

James, R. A.

G. T. Seaborg, R. A. James, and A. Ghiorso, “The new element curium (atomic number 96)” in The Transuranium Elements: Research Papers, Vol. 14B, Paper 22.2 (MacGraw-Hill, New York, 1949), p. 1554.

Klinkenberg, P. F. A.

P. F. A. Klinkenberg, Physica (Utrecht) 32, 113 (1966).

Lucas, P.

W. T. Carnall, H. M. Crosswhite, R. G. Pappalardo, D. Cohen, S. Fried, P. Lucas, and F. Wagner, J. Chem. Phys. 61, 4993 (1974).
[CrossRef]

Marquet, L. C.

Marrus, R.

J. C. Hubbs, R. Marrus, and J. O. Winocur, Phys. Rev. 114, 586 (1959).
[CrossRef]

McLaughlin, R. D.

Meggers, W. F.

W. F. Meggers, J. Opt. Soc. Am. 50, 405 (1960).
[CrossRef]

Moore, W. F.

J. G. Conway, W. F. Moore, and W. T. Crane, J. Am. Chem. Soc. 73, 1308 (1951).
[CrossRef]

Pappalardo, R. G.

W. T. Carnall, H. M. Crosswhite, R. G. Pappalardo, D. Cohen, S. Fried, P. Lucas, and F. Wagner, J. Chem. Phys. 61, 4993 (1974).
[CrossRef]

Phillips, J. G.

S. P. Davis and J. G. Phillips, The Red System(A2Π–X2∑) of the CN Molecule, (University of California, Berkeley, 1963).

Reader, J.

J. Reader and S. P. Davis, J. Res. Nat. Bur. Stand., Sec. A 71, 587 (1967).
[CrossRef]

Russell, H. N.

H. N. Russell, Astrophys. J. 96, 11 (1942).
[CrossRef]

Seaborg, G. T.

G. T. Seaborg, R. A. James, and A. Ghiorso, “The new element curium (atomic number 96)” in The Transuranium Elements: Research Papers, Vol. 14B, Paper 22.2 (MacGraw-Hill, New York, 1949), p. 1554.

Sugar, J.

J. Sugar, J. Chem. Phys. 59, 788 (1973); J. Chem. Phys. 60, 4103 (1974).
[CrossRef]

Tomkins, F. S.

Vander Sluis, K. L.

Wagner, F.

W. T. Carnall, H. M. Crosswhite, R. G. Pappalardo, D. Cohen, S. Fried, P. Lucas, and F. Wagner, J. Chem. Phys. 61, 4993 (1974).
[CrossRef]

Winocur, J. O.

J. C. Hubbs, R. Marrus, and J. O. Winocur, Phys. Rev. 114, 586 (1959).
[CrossRef]

Worden, E. F.

J. G. Conway and E. F. Worden, J. Opt. Soc. Am. 61, 704 (1971).
[CrossRef]

E. F. Worden, R. G. Gutmacher, and J. G. Conway, Appl. Opt. 2, 707 (1963).
[CrossRef]

E. F. Worden, R. G. Gutmacher, E. K. Hulet, J. G. Conway, and M. Fred, J. Opt. Soc. Am. 52, 1311A (1962).

Appl. Opt. (2)

Appl. Spectrosc. (1)

Astrophys. J. (1)

H. N. Russell, Astrophys. J. 96, 11 (1942).
[CrossRef]

J. Am. Chem. Soc. (1)

J. G. Conway, W. F. Moore, and W. T. Crane, J. Am. Chem. Soc. 73, 1308 (1951).
[CrossRef]

J. Chem. Phys. (2)

W. T. Carnall, H. M. Crosswhite, R. G. Pappalardo, D. Cohen, S. Fried, P. Lucas, and F. Wagner, J. Chem. Phys. 61, 4993 (1974).
[CrossRef]

J. Sugar, J. Chem. Phys. 59, 788 (1973); J. Chem. Phys. 60, 4103 (1974).
[CrossRef]

J. Inorg. Nucl. Chem. (1)

W. C. Bentley, J. Inorg. Nucl. Chem. 30, 2007 (1968).
[CrossRef]

J. Opt. Soc. Am. (11)

J. Res. Nat. Bur. Stand., Sec. A (1)

J. Reader and S. P. Davis, J. Res. Nat. Bur. Stand., Sec. A 71, 587 (1967).
[CrossRef]

Phys. Rev. (1)

J. C. Hubbs, R. Marrus, and J. O. Winocur, Phys. Rev. 114, 586 (1959).
[CrossRef]

Physica (Utrecht) (1)

P. F. A. Klinkenberg, Physica (Utrecht) 32, 113 (1966).

Other (8)

S. P. Davis and J. G. Phillips, The Red System(A2Π–X2∑) of the CN Molecule, (University of California, Berkeley, 1963).

We are indebted to H. M. Crosswhite of Argonne National Laboratory for performing the theoretical calculations on 5f87s2 of Cm i.

G. T. Seaborg, R. A. James, and A. Ghiorso, “The new element curium (atomic number 96)” in The Transuranium Elements: Research Papers, Vol. 14B, Paper 22.2 (MacGraw-Hill, New York, 1949), p. 1554.

R. G. Gutmacher of Lawrence Livermore Laboratory has compiled extensive line lists of 240Pu as emitted by electrodeless lamps and observed on the ANL 9.15 m spectrograph.

We are indebted to M. Fred of Argonne National Laboratory for the computer program for least-squares reduction of the Zeeman data.

J. M. Blank, thesis, Massachusetts Institute of Technology, June, 1952.

Our search programs were obtained from the National Bureau Standards. They were originally written by G. Racah for the analysis of complex spectra.

Mark Fred of Argonne National Laboratory estimated this value based on observations in other actinides.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

FIG. 1
FIG. 1

Types of Zeeman patterns and formulas used to determine g values from unresolved patterns.

FIG. 2
FIG. 2

Level structure of the 5f76d7s2 configuration and of the low terms of the 5f76d27s configuration for Cm i.

FIG. 3
FIG. 3

Level structure of the 7F term of the 5f87s2 configuration and the structure of the 5f77s27p configuration of Cm i.

FIG. 4
FIG. 4

Range of isotope shifts for Cm i electronic configurations relative to the 5 f 7 6 d 7 s 2 D 9 2 o ground level. The value of X is about + 0.7 cm−1.

FIG. 5
FIG. 5

Level structure of the 5f76d7s8s configuration showing the complete 11D term and portions of the 9D terms.

FIG. 6
FIG. 6

Term structures of the 5f76d7s7p configuration of Cm i. Only the levels of complete terms are shown.

FIG. 7
FIG. 7

Term structure of the 5f86d7s configuration of Cm i showing the 9(GFD) and 7(GF) terms. The 9G0, 7F0,1 and 7G1, levels of the terms shown have not been found.

Tables (8)

Tables Icon

TABLE I Approximate isotopic composition of the curium sample used in spectroscopic sources.

Tables Icon

TABLE II Odd levels of Cm i. Level energy and isotope shifts are in cm−1, observed g values are in Lorentz units, and a P after an observed g value indicates a perturbed Zeeman splitting.

Tables Icon

TABLE III Even levels of Cm i. Level energy and isotope shifts are in cm−1, observed g values are in Lorentz units, and a P after an observed g value indicates a perturbed Zeeman splitting.

Tables Icon

TABLE IV Odd configurations of Cm i.

Tables Icon

TABLE V Comparison of observed and calculated energy and g values for levels of the 5f76d7s2 configuration. Level compositions are given and the parameters used are listed at the end of the table.

Tables Icon

TABLE VI Even configurations of Cm i.

Tables Icon

TABLE VII Calculated and observed energies and g values of levels of the 5f87s2 configuration. Calculation by H. M. Crosswhite (see Refs. 29 and 30).

Tables Icon

TABLE VIII Comparison of calculated and observed energies and g values for levels of the 5f77s27p configuration.